Skip to main content
Log in

Offspring’s blood pressure and metabolic phenotype after exposure to gestational hypertension in utero

  • DEVELOPMENTAL EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

The aim of the study was to investigate the impact of de novo hypertension in pregnancy, i.e. gestational (non-proteinuric) hypertension (GH) and preeclampsia (PE), on the long-term metabolic outcome of the offspring. Data was obtained from the Northern Finland Birth Cohort 1986 (NFBC 1986), including 9,362 pregnancies and subsequent births between 1985 and 1986. Pregnancies were categorised into three groups: (1) GH with blood pressure (BP) ≥ 140/90 mmHg, (2) PE with BP ≥ 140/90 mmHg and proteinuria, and (3) reference group with normal BP. The final study population included 331 offspring of mothers with GH, 197 with PE and 5,045 offspring of normotensive mothers. The main outcome measures were systolic and diastolic blood pressure (SBP, DBP), mean arterial pressure (MAP), body mass index (BMI), and serum lipid, glucose and insulin levels of the 16 year-old offspring. The children of mothers with GH had higher BP compared to the reference group (SBP percentage difference 2.7 (95 % CI 1.6, 3.8); DBP 3.4 (2.1, 4.6); MAP 3.1 (2.0, 4.1), P < 0.001 for all) and a tendency towards higher cholesterol and apolipoprotein B values. The offspring of mothers with PE had higher DBP and MAP, however after the adjustments this difference disappeared. Maternal de novo hypertension during pregnancy is associated with offspring’s elevated blood pressure level already in adolescence. GH may also be associated with unfavourable lipid profile of the offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Roberts JM, Pearson GD, Cutler JA, Lindheimer MD. National Heart Lung and Blood, Institute. Summary of the NHLBI working group on research on hypertension during pregnancy. Hypertens Pregn. 2003;22(2):109–27.

    Article  Google Scholar 

  2. Ferreira I, Peeters LL, Stehouwer CD. Preeclampsia and increased blood pressure in the offspring: meta-analysis and critical review of the evidence. J Hypertens. 2009;27(10):1955–9.

    Article  PubMed  CAS  Google Scholar 

  3. Palmsten K, Buka SL, Michels KB. Maternal pregnancy-related hypertension and risk for hypertension in offspring later in life. Obstet Gynecol. 2010;116(4):858–64.

    Article  PubMed  Google Scholar 

  4. Mamun AA, Kinarivala MK, O’Callaghan M, Williams G, Najman J, Callaway L. Does hypertensive disorder of pregnancy predict offspring blood pressure at 21 years? Evidence from a birth cohort study. J Hum Hypertens. 2011;4(6):478–81

    Google Scholar 

  5. Tenhola S, Rahiala E, Martikainen A, Halonen P, Voutilainen R. Blood pressure, serum lipids, fasting insulin, and adrenal hormones in 12-year-old children born with maternal preeclampsia. J Clin Endocrinol Metab. 2003;88(3):1217–22.

    Article  PubMed  CAS  Google Scholar 

  6. Lawlor DA, Macdonald-Wallis C, Fraser A, Nelson SM, Hingorani A, Davey Smith G, et al. Cardiovascular biomarkers and vascular function during childhood in the offspring of mothers with hypertensive disorders of pregnancy: findings from the Avon Longitudinal Study of Parents and Children. Eur Heart J. 2012;33(3):335–45.

    Article  PubMed  Google Scholar 

  7. Davis EF, Lazdam M, Lewandowski AJ, Worton SA, Kelly B, Kenworthy Y, et al. Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics. 2012;129(6):e1552–61.

    Article  PubMed  Google Scholar 

  8. Kajantie E, Eriksson JG, Osmond C, Thornburg K, Barker DJ. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki birth cohort study. Stroke. 2009;40(4):1176–80.

    Article  PubMed  Google Scholar 

  9. Kotchen JM, Kotchen TA, Cottrill CM, Guthrie GP Jr, Somes G. Blood pressures of young mothers and their first children 3–6 years following hypertension during pregnancy. J Chronic Dis. 1979;32(9–10):653–9.

    Article  PubMed  CAS  Google Scholar 

  10. Geelhoed JJ, Fraser A, Tilling K, Benfield L, Davey Smith G, Sattar N, et al. Preeclampsia and gestational hypertension are associated with childhood blood pressure independently of family adiposity measures: the Avon Longitudinal Study of Parents and Children. Circulation. 2010;122(12):1192–9.

    Article  PubMed  Google Scholar 

  11. Järvelin MR, Elliott P, Kleinschmidt I, Martuzzi M, Grundy C, Hartikainen AL, et al. Ecological and individual predictors of birthweight in a Northern Finland Birth Cohort 1986. Paediatr Perinat Epidemiol. 1997;11(3):298–312.

    Article  PubMed  Google Scholar 

  12. Kantomaa MT, Tammelin TH, Näyhä S, Taanila AM. Adolescents’ physical activity in relation to family income and parents’ education. Prev Med. 2007;44(5):410–5.

    Article  PubMed  Google Scholar 

  13. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52.

    Article  PubMed  Google Scholar 

  14. Seidman DS, Laor A, Gale R, Stevenson DK, Mashiach S, Danon YL. Pre-eclampsia and offspring’s blood pressure, cognitive ability and physical development at 17-years-of-age. Br J Obstet Gynaecol. 1991;98(10):1009–14.

    Article  PubMed  CAS  Google Scholar 

  15. Oglaend B, Forman MR, Romundstad PR, Nilsen ST, Vatten LJ. Blood pressure in early adolescence in the offspring of preeclamptic and normotensive pregnancies. J Hypertens. 2009;27(10):2051–4.

    Article  PubMed  CAS  Google Scholar 

  16. Huxley R, Lewington S, Clarke R. Cholesterol, coronary heart disease and stroke: a review of published evidence from observational studies and randomized controlled trials. Semin Vasc Med. 2002;2(3):315–23.

    Article  PubMed  Google Scholar 

  17. McGill HC, McMahan CA, Gidding SS. Are pediatricians responsible for prevention of adult cardiovascular disease? Nat Clin Pract Cardiovasc Med. 2009;6(1):10–1.

    Article  PubMed  Google Scholar 

  18. Daniels SR, Greer FR. Committee on Nutrition. Lipid screening and cardiovascular health in childhood. Pediatrics. 2008;122(1):198–208.

    Article  PubMed  Google Scholar 

  19. Freedman DS, Otvos JD, Jeyarajah EJ, Shalaurova I, Cupples LA, Parise H, et al. Sex and age differences in lipoprotein subclasses measured by nuclear magnetic resonance spectroscopy: the Framingham Study. Clin Chem. 2004;50(7):1189–200.

    Article  PubMed  CAS  Google Scholar 

  20. Hazzard WR. Atherogenesis: why women live longer than men. Geriatrics. 1985;40(1):42–51.

    PubMed  CAS  Google Scholar 

  21. Walldius G, Jungner I, Holme I, Aastveit AH, Kolar W, Steiner E. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet. 2001;358(9298):2026–33.

    Article  PubMed  CAS  Google Scholar 

  22. Westerveld HT, Van Lennep JE, van Lennep HW, Liem AH, de Boo JA, van der Schouw YT, et al. Apolipoprotein B and coronary artery disease in women: a cross-sectional study in women undergoing their first coronary angiography. Arterioscler Thromb Vasc Biol. 1998;18(7):1101–7.

    Article  PubMed  CAS  Google Scholar 

  23. Alexander BT. Placental insufficiency leads to development of hypertension in growth-restricted offspring. Hypertension. 2003;41(3):457–62.

    Article  PubMed  CAS  Google Scholar 

  24. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2(8663):577–80.

    Article  PubMed  CAS  Google Scholar 

  25. Szuran T, Zimmerman E, Pliska V, Pfister HP, Welzl H. Prenatal stress effects on exploratory activity and stress-induced analgesia in rats. Dev Psychobiol. 1991;24(5):361–72.

    Article  PubMed  CAS  Google Scholar 

  26. Weinstock M, Poltyrev T, Schorer-Apelbaum D, Men D, McCarty R. Effect of prenatal stress on plasma corticosterone and catecholamines in response to footshock in rats. Physiol Behav. 1998;64(4):439–44.

    Article  PubMed  CAS  Google Scholar 

  27. Igosheva N, Klimova O, Anishchenko T, Glover V. Prenatal stress alters cardiovascular responses in adult rats. J Physiol (Lond). 2004;557(Pt 1):273–85.

    Article  CAS  Google Scholar 

  28. Cadet R, Pradier P, Dalle M, Delost P. Effects of prenatal maternal stress on the pituitary adrenocortical reactivity in guinea-pig pups. J Dev Physiol. 1986;8(6):467–75.

    PubMed  CAS  Google Scholar 

  29. Dauprat P, Monin G, Dalle M, Delost P. The effects of psychosomatic stress at the end of pregnancy on maternal and fetal plasma cortisol levels and liver glycogen in guinea-pigs. Reprod Nutr Dev. 1984;24(1):45–51.

    Article  PubMed  CAS  Google Scholar 

  30. Dodic M, Moritz K, Koukoulas I, Wintour EM. Programmed hypertension: kidney, brain or both? Trends Endocrinol Metab. 2002;13(9):403–8.

    Article  PubMed  CAS  Google Scholar 

  31. Seckl JR. Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms. Mol Cell Endocrinol. 2001;185(1–2):61–71.

    Article  PubMed  CAS  Google Scholar 

  32. Welberg LA, Seckl JR. Prenatal stress, glucocorticoids and the programming of the brain. J Neuroendocrinol. 2001;13(2):113–28.

    Article  PubMed  CAS  Google Scholar 

  33. Dampney RA. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev. 1994;74(2):323–64.

    PubMed  CAS  Google Scholar 

  34. Jansson T, Lambert GW. Effect of intrauterine growth restriction on blood pressure, glucose tolerance and sympathetic nervous system activity in the rat at 3–4 months of age. J Hypertens. 1999;17(9):1239–48.

    Article  PubMed  CAS  Google Scholar 

  35. Khan IY, Taylor PD, Dekou V, Seed PT, Lakasing L, Graham D, et al. Gender-linked hypertension in offspring of lard-fed pregnant rats. Hypertension. 2003;41(1):168–75.

    Article  PubMed  CAS  Google Scholar 

  36. Ozaki T, Nishina H, Hanson MA, Poston L. Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. J Physiol (Lond). 2001;530(Pt 1):141–52.

    Article  CAS  Google Scholar 

  37. Zukowska-Grojec Z, Shen GH, Capraro PA, Vaz CA. Cardiovascular, neuropeptide Y, and adrenergic responses in stress are sexually differentiated. Physiol Behav. 1991;49(4):771–7.

    Article  PubMed  CAS  Google Scholar 

  38. Girdler SS, Turner JR, Sherwood A, Light KC. Gender differences in blood pressure control during a variety of behavioral stressors. Psychosom Med. 1990;52(5):571–91.

    PubMed  CAS  Google Scholar 

  39. Livezey GT, Miller JM, Vogel WH. Plasma norepinephrine, epinephrine and corticosterone stress responses to restraint in individual male and female rats, and their correlations. Neurosci Lett. 1985;62(1):51–6.

    Article  PubMed  CAS  Google Scholar 

  40. Macdonald-Wallis C, Lawlor DA, Heron J, Fraser A, Nelson SM, Tilling K. Relationships of risk factors for pre-eclampsia with patterns of occurrence of isolated gestational proteinuria during normal term pregnancy. PLoS ONE. 2011;6(7):e22115.

    Article  PubMed  CAS  Google Scholar 

  41. Baraldi AN, Enders CK. An introduction to modern missing data analyses. J Sch Psychol. 2010;48(1):5–37.

    Article  PubMed  Google Scholar 

  42. Pouta A, Hartikainen AL, Sovio U, Gissler M, Laitinen J, McCarthy MI, et al. Manifestations of metabolic syndrome after hypertensive pregnancy. Hypertension. 2004;43(4):825–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Satu Miettola has received funding from the Medical Department of the University of Oulu and from the Northern Ostrobothnia Hospital District. The Northern Finland Birth Cohort 1986 study including data collection was funded by Academy of Finland (project grants 104781, 120315, University Hospital Oulu, Biocenter, University of Oulu, Finland, and the European Commission (EURO-BLCS, Framework 5 award QLG1-CT-2000-01643). The authors’ work was independent of the funders. No other authors reported disclosures. Some data from this study were presented in abstract form as preliminary data in the annual meeting of European Association for the Study of Diabetes (EASD, September 17–21.2007, Amsterdam, The Netherlands).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satu Miettola or Marjo-Riitta Järvelin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miettola, S., Hartikainen, AL., Vääräsmäki, M. et al. Offspring’s blood pressure and metabolic phenotype after exposure to gestational hypertension in utero. Eur J Epidemiol 28, 87–98 (2013). https://doi.org/10.1007/s10654-013-9763-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-013-9763-5

Keywords

Navigation