Development of local clinical practice guidelines in the real world: an evolving scene in China

Joey SW Kwong, Xin Sun

INTRODUCTION
Clinical practice guidelines play a vital and indispensable role in every healthcare system. In China, the comprehensive reform of the healthcare system was initiated in 2009 with the ultimate goal of universal health coverage.1 The approach to boost government funding to subsidise health expenditures in the form of government health insurance schemes inevitably led to higher demands for healthcare services and a sharp rise in health expenditures.2-4 This dramatic transformation of healthcare delivery and utilisation highlights the important consideration of ensuring that the health system in China is able to meet the increased demands and provide universal access to effective and consistent healthcare with optimised resource management. At the heart of a sustainable and effective health system is the use of robust and relevant research evidence to inform clinical practice at local and national levels. Successful translation of evidence into practice is achieved by trustworthy clinical practice guidelines, defined by the US Institute of Medicine as ‘statements that include recommendations intended to optimise patient care that are informed by a systematic review of evidence and an assessment of the benefits and harms of alternative care options’.5 China is emerging as a new hub for guideline development with the production of Chinese clinical practice guidelines increasing by nearly fourfold over the past few years.6 However, unlike their Western counterparts, China lacks a central infrastructure (eg, National Institute for Health and Care Excellence in the UK) to coordinate and monitor guideline development process. Most Chinese clinical practice guidelines are developed by professional societies, such as the Chinese Medical Association. Ideally, guideline recommendations should be formulated de novo with reference to primary research data from Chinese populations due to known ethnic differences in drug responses and diagnostic reference values as well as country-specific health expenditure trends.7 However, enrolment numbers of Chinese patients in global multicentre clinical trials are often modest, and data by ethnic subgroups are typically underpowered and may not be readily available.7 In addition, China still falls behind the USA and Europe in the conduct of clinical trials, and most recommendations in Chinese clinical practice guidelines are based on imported knowledge from US and European guidelines.8-9

EVIDENCE BASE FOR THE 2016 CHINESE GUIDELINE FOR PCI: A CLOSER LOOK
Among the five included RCTs used to formulate recommendations in the 2016 Chinese guideline for PCI, the Reverse-STEMI study contributed to a unique recommendation of ‘As appropriate for healthcare settings in China, primary PCI can be performed by transferring experienced operators to PCI-capable hospitals (with first-medical-contact-to-balloon time of <120 min’ (Class IIb recommendation, Level of Evidence B).10-13 The Reverse-STEMI study was conducted in a network of five hospitals in Shanghai and aimed to explore whether an interventionalist-transfer strategy was effective in reducing door-to-balloon time and improving outcomes in patients with ST-elevation myocardial infarction (STEMI) within 12 hours of symptom onset presenting to hospitals with catheterisation laboratories (cath labs) but no qualified interventionalists to perform PCI.14 15 The rationale of this one-of-a-kind study is a great illustration of how the Chinese research communities tackle real-world clinical practice questions that are close to home. Guidelines from the Western countries have set ideal time frames for reperfusion strategies in patients with acute STEMI: for those presenting in PCI-capable hospitals, the ideal first-medical-contact-to-device time is ≤90 min, and for those initially presenting in non-PCI-capable hospitals, ≤120 min with door-in-door-out time of ≤30 min.16 17 However, for more than 1000 hospitals in China that are equipped with angiographic facilities, many lack qualified and experienced interventional cardiologists to perform PCI.18 As an example, it has been reported that there were
only five experienced interventional cardiologists responsible for four cath labs at a tertiary-care 2000-bed hospital in Urumqi, Xinjiang Province, a large and underdeveloped area in China. Furthermore, resources are known to be uneven across different regions in China. A national survey in 2010 revealed that for major cities with high gross domestic product such as Beijing, Shanghai and Tianjin, the numbers of PCI-capable hospitals per 10 million residents exceeded the national average (8.11) by up to fivefold; in contrast, the average number of PCI-capable hospitals in the Sichuan Province was only one-fourth of the national average. Together with a lack of coordinated emergency medical service and interhospital transfer system, Chinese patients with STEMI in rural and urban healthcare settings. Although RCTs remain at the top of the evidence hierarchy and are the gold standard for evaluating efficacy, high-quality multicentre registries are extremely Western guideline recommendations from use in the Eastern populations.

Another important update of the 2016 Chinese PCI guideline is a new recommendation regarding the need to establish a quality control system within each PCI centre in China (Class I recommendation, Level of Evidence C). This recommendation, formulated by expert consensus, is based on the growing epidemic of coronary artery disease (CAD) and exponential increase in CAD mortality rates in China, which undoubtedly calls for greater efforts to monitor the overall quality and performance of the high volume of PCI procedures in the real world in order to further understand if clinical practice guidelines are being implemented. The ongoing China Patient-Centered Evaluative Assessment of Cardiac Events (PEACE) Prospective Study of Percutaneous Coronary Intervention, part of the nationwide China PEACE Initiative, is a multicentre prospective cohort study involving 34 tertiary hospitals that aims to evaluate long-term clinical and patient-reported outcomes, adherence to medication for secondary prevention of CAD as well as risk factors in patients following PCI. Also worth highlighting is the nationwide China Acute Myocardial Infarction Registry, which was designed to incorporate the three-tier hospital infrastructure in China: province, prefecture and county. This broad representation of hospitals will ensure that data obtained will reflect current real-world practice trends, patient outcomes and prognosis as well as economic situations in both rural and urban healthcare settings. Although RCTs remain at the top of the evidence hierarchy and are the gold standard for evaluating efficacy, high-quality multicentre registries are extremely

<table>
<thead>
<tr>
<th>Study ID</th>
<th>N</th>
<th>No. of centres</th>
<th>Enrolment period</th>
<th>Follow-up duration</th>
<th>CoR</th>
<th>LoE</th>
<th>Trial registration no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang 2008³⁴</td>
<td>60</td>
<td>N/R</td>
<td>August–October 2006</td>
<td>90 days</td>
<td></td>
<td></td>
<td>NCT00713557</td>
</tr>
<tr>
<td>Zhang 2011¹³ (REVERSE-STEMI)</td>
<td>334</td>
<td>5</td>
<td>November 2005–November 2007</td>
<td>1 year</td>
<td>IIIb</td>
<td>B</td>
<td>NCT01642667</td>
</tr>
<tr>
<td>Han 2013²⁵</td>
<td>197</td>
<td>4</td>
<td>Not reported</td>
<td>1 year</td>
<td></td>
<td></td>
<td>NCT01618381</td>
</tr>
<tr>
<td>Zhu 2013 (ICT-AMI)³⁶</td>
<td>453</td>
<td>N/R</td>
<td>June 2006–March 2010</td>
<td>6 months</td>
<td></td>
<td></td>
<td>NCT00786136</td>
</tr>
<tr>
<td>Geng 2014²⁷</td>
<td>535</td>
<td>1</td>
<td>March 2012–February 2013</td>
<td>30 days</td>
<td></td>
<td></td>
<td>NCT01620705</td>
</tr>
<tr>
<td>Han 2014 (I-LOVE-IT 2)³⁸</td>
<td>2737</td>
<td>32</td>
<td>October 2012–June 2013</td>
<td>12 months</td>
<td>I</td>
<td>B</td>
<td>NCT01681381</td>
</tr>
<tr>
<td>Han 2014 (TRACK-D)³⁹</td>
<td>2998</td>
<td>53</td>
<td>December 2008–October 2011</td>
<td>30 days</td>
<td>IIa</td>
<td>A</td>
<td>NCT00786136</td>
</tr>
<tr>
<td>Xu 2014 (PEPCAD China ISR)⁴⁰</td>
<td>220</td>
<td>17</td>
<td>March 2011–April 2012</td>
<td>12 months</td>
<td>I</td>
<td>A</td>
<td>NCT01620705</td>
</tr>
<tr>
<td>Zhou 2015²¹</td>
<td>621</td>
<td>1</td>
<td>May 2009–May 2013</td>
<td>6 months</td>
<td></td>
<td></td>
<td>NCT01620705</td>
</tr>
<tr>
<td>Chen 2015 (DKCRUSH-VI)⁴²</td>
<td>320</td>
<td>8</td>
<td>November 2011–June 2013</td>
<td>12 months</td>
<td></td>
<td></td>
<td>NCT01696110</td>
</tr>
<tr>
<td>Gao 2015 (ABSORB China)⁴³</td>
<td>480</td>
<td>24</td>
<td>July 2013–March 2014</td>
<td>1 year</td>
<td></td>
<td></td>
<td>NCT01923740</td>
</tr>
<tr>
<td>Li 2015⁴⁴</td>
<td>48</td>
<td>1</td>
<td>April–November 2014</td>
<td>6 months</td>
<td></td>
<td></td>
<td>NCT014004303</td>
</tr>
<tr>
<td>Han 2015 (BRIGHT)⁴⁵</td>
<td>2194</td>
<td>82</td>
<td>August 2012–June 2013</td>
<td>1 year</td>
<td>I</td>
<td>A</td>
<td>NCT01696110</td>
</tr>
<tr>
<td>Zhang B 2015 (ISCAP)⁴⁶</td>
<td>2674</td>
<td>50</td>
<td>N/R</td>
<td>6 months</td>
<td></td>
<td></td>
<td>NCT01293097</td>
</tr>
<tr>
<td>Qian 2016²⁷</td>
<td>264</td>
<td>1</td>
<td>February 2014–February 2015</td>
<td>90 days</td>
<td></td>
<td></td>
<td>NCT02405377</td>
</tr>
</tbody>
</table>

ABSORB China, A Clinical Evaluation of Absorb Bioresorbable Vascular Scaffold (Absorb BVS) System in Chinese Population; BRIGHT, Bivalirudin in Acute Myocardial Infarction vs Heparin and GPI Plus Heparin Trial; CoR, class of recommendation; DKCRUSH-VI, Double Kissing Crush versus Provisional Stenting Technique for Treatment of Coronary Bifurcation Lesions VI; I-LOVE-IT 2, Evaluate Safety and Effectiveness of the Tivoli DES and the Firebird DES for Treatment of Coronary Revascularization; ISCAP, Intensive Statin Therapy for Chinese Patients with Coronary Artery Disease Undergoing Percutaneous Coronary Intervention; LoE, Level of Evidence; N/R, not reported; PCI, percutaneous coronary intervention; PEPCAD China ISR, A Prospective, Multicenter, Randomized Trial of Paclitaxel-Coated versus Paclitaxel-Eluting Stent for the Treatment of Drug-Eluting Stent In-Stent Restenosis; PCI, percutaneous coronary intervention.
CHALLENGES IN THE REAL WORLD

In addition to achieving optimal applicability by using Chinese population study data when formulating guideline recommendations, decision makers within the health system must be able to trust the guidelines before using them. A particularly important marker for trustworthiness is the efficiency in updating guideline recommendations when new evidence emerges in order to guarantee the validity of their recommendations to patients, health professionals and policymakers. A survival analysis reported that guideline recommendations are likely to be out-of-date after 3 years.24 However, a survey of 143 Chinese practice guidelines revealed that only 7.7% (n=11) of the included guidelines had reported to have been updated and for those that were updated, the average update frequency was 5.2 years.25 It took 4 years for the Chinese PCI guideline to be updated, and a staggering 9 years lapsed between the current and previous versions of the Chinese guideline for the management of dyslipidaemia in adults.26 Creating and updating clinical practice guidelines are important yet enormous tasks for guideline developers worldwide, and there is substantial room for improvement for Chinese guideline developers. No formal guidance on how clinical practice guidelines should be updated and how updated guidelines should be reported was available until recently, when the 16-item Checklist for the Reporting of Updated Guidelines (Checkup) was developed to specifically address the presentation and methodology of updated clinical practice guidelines.27 The checklist has come at a crucial time for Chinese guideline developers in particular, since there is currently minimal guidance on how often clinical guidelines should be updated, and it would be worth considering promoting the use of Checkup in China for increased transparency and rigour during guideline development process.

Resource availability is a key factor in developing clinical guidelines that can be successfully implemented in daily practice. It is clear that PCI is an emerging treatment strategy for CAD in China. The number of PCI performed in urban Chinese hospitals increased 21-fold over the period of 2001–201128; in 2014 alone, over 500,000 cases of PCI were performed.21 This is believed to be attributed to the healthcare system reform and expanded health insurance coverage of coronary interventions.22 However, the imbalance of healthcare resource distribution among rural and urban communities will not go away overnight and, coupled with the lack of catheterization facilities or capable operators to perform PCI, fibrinolysis therefore remains as a viable alternative for patients in whom access is unavailable or falls outside of the recommended therapeutic window. For basic-level rural hospitals without catheterization facilities, the use of fibrinolytic therapy should be actively encouraged. Indeed, guidelines from China, Europe and the USA are in sync to recommend the use of fibrinolytic therapy in patients with STEMI within 12 hours of ischaemic symptoms without contraindications if PCI is unavailable within 120 min from first medical contact (Class I recommendation, Level of Evidence A).14 30 31 Prompt actions in subjecting patients with STEMI to timely and effective reperfusion therapy, whether it is PCI or fibrinolysis, remain the ultimate goal in acute care. For local clinical practice guidelines to be truly applicable, we need continual efforts in conducting clinical research in local populations and guideline commendations should be formulated with consideration on resource constraints and cost effectiveness, especially for vast countries with imbalanced economical distributions across regions. The third phase of the Clinical Pathways in Acute Coronary Syndromes (CPACS) programme, CPACS-3, is an ongoing stepped-wedge cluster randomised study designed to investigate the role of a multifaceted quality improvement initiative in clinical outcomes among patients with acute coronary syndromes (ACS) from 104 resource-constrained rural county hospitals without PCI facilities and for which the patient-transfer time to the nearest largest tertiary hospital with cath lab facilities is beyond a 90 min time frame.32 Results of this interesting study will not only provide useful insights as to how best to tackle unequal access to healthcare and thereby strengthen overall CAD care in rural China, but the study data can also serve as useful reference to other low-income and middle-income countries with similar resource constraints. We anticipate the results of CPACS-3 will bring much value to future updates of relevant Chinese clinical practice guidelines.

THE FUTURE IS BRIGHT

Much has changed in China over the past decade, with a steady and promising increase in the ability to synthesise innovative research evidence and translate it into clinical practice and health policies that are appropriate for use at the given times. Strong government support is likely to be a substantial trigger behind the recent advances in clinical research in China: expenditures on research and development reached a total of over 1.5 trillion Renminbi in 2016.33 Besides financial stability, China has observed successful capacity building in maintaining a sustainable research infrastructure of multiple national clinical research centres, with a recent call for developing a learning healthcare system to drive forward a continual quality improvement initiative.9 The aforementioned China PEACE programme is an excellent demonstration to emphasise the importance of national efforts in conducting authentic, high-quality clinical research. It is worth remembering that, the main reason behind the marked improvement in utilising local research evidence in the 2016 Chinese PCI guideline lies with the increasing body of research evidence available for knowledge translation, as PCI is one of the fastest growing fields in Chinese cardiovascular health research. Development of clinical practice guidelines is labour intensive and efforts should not be wasted in guidelines that fail to be implemented at the point of healthcare because practice recommendations do not meet the needs of those in question. Clinical trials and national observational studies conducted in local populations allow for a better understanding of treatment effectiveness and real-world practice trends across rural and urban regions and such ethnic-specific data should form the core evidence base for clinical practice guidelines that are truly trustworthy and useable.

It is clear that the concept of ‘using Chinese data for high-quality Chinese clinical guidelines, for Chinese patients’ is slowly turning into reality. For a transparent and structured guideline development framework to be fully operational in China, there needs to be coordinated, collaborative efforts involving relevant Chinese stakeholders in assuring quality and
transparency in the conduct of high-quality primary research, such as reinforcing the importance of trial registration in public trials registries, and effective translation of knowledge into practice in the current era of evidence overload. Although the number of Chinese guidelines for cardiovascular disease management still lags behind those from the USA and Europe, one should be encouraged by the aforementioned phenomena of steady growth of Chinese clinical practice guidelines and be reassured that China is taking small yet significant steps towards producing trustworthy clinical practice guidelines that are current, fit for purpose and applicable to real-world patients.

Correction notice This paper has been amended since it was published Online First. Owing to a scripting error, some of the publisher names in the references were replaced with ‘BMJ Publishing Group’. This only affected the full text version, not the PDF. We have since corrected these errors and the correct publishers have been inserted into the references.

Contributors Wrote the first draft of the manuscript: JK. Contributed to the writing of the manuscript: JK and XS. Approved the final version for submission: JK and XS. Both authors have read, and confirm that they meet, ICMJE criteria for authorship.

Competing interests None declared.

Provenance and peer review Not commissioned; internally peer reviewed.

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES

41. Zhou SS, Tian F, Chen YD, et al. Combination therapy reduces the incidence of no-reflow after primary per-cutaneous coronary intervention in patients with...