Table 3

Linear regression of VA

ParameterEstimateSEt Valuep ValueAdj. R2FDFModel P
Cross-sectional model, regression of VA quadratic in CA
 Age1.16220.088613.122<0.00010.426780.886.638<0.0001
 (Age)21.14820.091712.519<0.0001
 (Age)2: tobacco0.59940.23002.6060.0094
 (Age)2: amphetamine0.82880.35822.3140.0210
 Age: tobacco0.20740.09542.1730.0301
ParameterParameter valuesModel parameters
ValueSEDFt Valuep ValueAICBICLogLik
Longitudinal model, regression of VA quadratic in CA
 Age1.21810.083520514.5874<0.0001395.0924437.9048−188.5462
 (Age)21.22530.082220514.9025<0.0001
 Age: amphetamine0.24880.10742052.31740.0215
Longitudinal model, regression of VA/CA, cubic in CA
 (Age)2: BMI−0.20860.0401164−5.1965<0.0001391.9747536.0531−164.9874
 (Age)3: BMI−0.11470.0347164−3.30230.0012
 BMI0.27250.08821643.09150.0023
 (Age)2: Days: BMI: Amphetamine−2.17030.8548164−2.53910.0120
 Days: Amphetamine3.18281.29051642.46640.0147
 Age: tobacco7.22172.96211642.43800.0158
 Age: BMI: tobacco−2.20180.9296164−2.36860.0190
 (Age)3: Days: BMI: Amphetamine−0.75050.3333164−2.25190.0257
 (Age)3: days: BMI: non-smokers0.01300.00601642.16830.0316
  • AIC, akaike information criterion; BIC, bayesian information criterion; BMI, body mass index; CA, chronological age; DF, degrees of freedom; LogLik, Log-Likelihood; VA, vascular age.