Skip to main content
Log in

Multimodality imaging in the assessment of myocardial viability

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The prevalence of heart failure due to coronary artery disease continues to increase, and it portends a worse prognosis than non-ischemic cardiomyopathy. Revascularization improves prognosis in these high-risk patients who have evidence of viability; therefore, optimal assessment of myocardial viability remains essential. Multiple imaging modalities exist for differentiating viable myocardium from scar in territories with contractile dysfunction. Given the multiple modalities available, choosing the best modality for a specific patient can be a daunting task. In this review, the physiology of myocardial hibernation and stunning will be reviewed. All the current methods available for assessing viability including echocardiography, cardiac magnetic resonance imaging, nuclear imaging with single photon emission tomography and positron emission tomography imaging and cardiac computed tomography will be reviewed. The effectiveness of the various techniques will be compared, and the limitations of the current literature will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gheorghiade M, Bonow RO (1998) Chronic heart failure in the United States: a manifestation of coronary artery disease. Circulation 97:282–289

    PubMed  CAS  Google Scholar 

  2. Bart BA, Shaw LK, McCants CB Jr, Fortin DF, Lee KL, Califf RM, O’Connor CM (1997) Clinical determinants of mortality in patients with angiographically diagnosed ischemic or nonischemic cardiomyopathy. J Am Coll Cardiol 30:1002–1008

    Article  PubMed  CAS  Google Scholar 

  3. Wijns W, Vatner SF, Camici PG (1998) Hibernating myocardium. N Engl J Med 339:173–181

    Article  PubMed  CAS  Google Scholar 

  4. Rahimtoola SH (1996) Hibernating myocardium has reduced blood flow at rest that increases with low-dose dobutamine. Circulation 94:3055–3061

    PubMed  CAS  Google Scholar 

  5. Taegtmeyer H (2010) Tracing cardiac metabolism in vivo: one substrate at a time. J Nucl Med 51(Suppl 1):80S–87S

    Article  PubMed  CAS  Google Scholar 

  6. Bonow RO (1996) Identification of viable myocardium. Circulation 94:2674–2680

    PubMed  CAS  Google Scholar 

  7. Borgers M, De Nollin S, Thone F, Wouters L, Van Vaeck L, Flameng W (1993) Distribution of calcium in a subset of chronic hibernating myocardium in man. Histochem J 25:312–318

    Article  PubMed  CAS  Google Scholar 

  8. Di Carli MF, Prcevski P, Singh TP, Janisse J, Ager J, Muzik O, Vander Heide R (2000) Myocardial blood flow, function, and metabolism in repetitive stunning. J Nucl Med 41:1227–1234

    PubMed  CAS  Google Scholar 

  9. Cwajg JM, Cwajg E, Nagueh SF, He ZX, Qureshi U, Olmos LI, Quinones MA, Verani MS, Winters WL, Zoghbi WA (2000) End-diastolic wall thickness as a predictor of recovery of function in myocardial hibernation: relation to rest-redistribution t1–201 tomography and dobutamine stress echocardiography. J Am Coll Cardiol 35:1152–1161

    Article  PubMed  CAS  Google Scholar 

  10. La Canna G, Alfieri O, Giubbini R, Gargano M, Ferrari R, Visioli O (1994) Echocardiography during infusion of dobutamine for identification of reversibly dysfunction in patients with chronic coronary artery disease. J Am Coll Cardiol 23:617–626

    Article  PubMed  CAS  Google Scholar 

  11. Bansal M, Jeffriess L, Leano R, Mundy J, Marwick TH (2010) Assessment of myocardial viability at dobutamine echocardiography by deformation analysis using tissue velocity and speckle-tracking. JACC Cardiovasc Imaging 3:121–131

    Article  PubMed  Google Scholar 

  12. Park SM, Hong SJ, Park JS, Lim SY, Ahn CM, Lim DS, Shim WJ (2010) Relationship between strain rate imaging and coronary flow reserve in assessing myocardial viability after acute myocardial infarction. Echocardiography

  13. Mollema SA, Delgado V, Bertini M, Antoni ML, Boersma E, Holman ER, Stokkel MP, van der Wall EE, Schalij MJ, Bax JJ (2010) Viability assessment with global left ventricular longitudinal strain predicts recovery of left ventricular function after acute myocardial infarction. Circ Cardiovasc Imaging 3:15–23

    Article  PubMed  Google Scholar 

  14. Cornel JH, Bax JJ, Elhendy A, Maat AP, Kimman GJ, Geleijnse ML, Rambaldi R, Boersma E, Fioretti PM (1998) Biphasic response to dobutamine predicts improvement of global left ventricular function after surgical revascularization in patients with stable coronary artery disease: implications of time course of recovery on diagnostic accuracy. J Am Coll Cardiol 31:1002–1010

    Article  PubMed  CAS  Google Scholar 

  15. Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH (2007) Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol 32:375–410

    Article  PubMed  Google Scholar 

  16. Balcells E, Powers ER, Lepper W, Belcik T, Wei K, Ragosta M, Samady H, Lindner JR (2003) Detection of myocardial viability by contrast echocardiography in acute infarction predicts recovery of resting function and contractile reserve. J Am Coll Cardiol 41:827–833

    Article  PubMed  Google Scholar 

  17. Agati L, Funaro S, Madonna M, Beradi E, Picardi MN, Vizza CD, Labbadia A, Francone M, Carbone I, Fedele F (2006) Tissue viability by contrast echocardiography. Eur J Echocardiogr 7:S22–S29

    Article  Google Scholar 

  18. Montant P, Chenot F, Goffinet C, Poncelet A, Vancraeynest D, Pasquet A, Gerber BL, Vanoverschelde JL (2010) Detection and quantification of myocardial scars by contrast-enhanced 3D echocardiography. Circ Cardiovasc Imaging 3:415–423

    Article  PubMed  Google Scholar 

  19. Hoffmann R, Altiok E, Nowak B, Heussen N, Kuhl H, Kaiser HJ, Bull U, Hanrath P (2002) Strain rate measurement by doppler echocardiography allows improved assessment of myocardial viability inpatients with depressed left ventricular function. J Am Coll Cardiol 39:443–449

    Article  PubMed  Google Scholar 

  20. Hoffmann R, Lethen H, Marwick T, Arnese M, Fioretti P, Pingitore A, Picano E, Buck T, Erbel R, Flachskampf FA, Hanrath P (1996) Analysis of interinstitutional observer agreement in interpretation of dobutamine stress echocardiograms. J Am Coll Cardiol 27:330–336

    Article  PubMed  CAS  Google Scholar 

  21. Plana JC, Mikati IA, Dokainish H, Lakkis N, Abukhalil J, Davis R, Hetzell BC, Zoghbi WA (2008) A randomized cross-over study for evaluation of the effect of image optimization with contrast on the diagnostic accuracy of dobutamine echocardiography in coronary artery disease the optimize trial. JACC Cardiovasc Imaging 1:145–152

    Article  PubMed  Google Scholar 

  22. Baer FM, Theissen P, Schneider CA, Voth E, Sechtem U, Schicha H, Erdmann E (1998) Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol 31:1040–1048

    Article  PubMed  CAS  Google Scholar 

  23. Gotte MJ, van Rossum AC, Twisk JWR, Kuijer JPA, Marcus JT, Visser CA (2001) Quantification of regional contractile function after infarction: Strain analysis superior to wall thickening analysis in discriminating infarct from remote myocardium. J Am Coll Cardiol 37:808–817

    Article  PubMed  CAS  Google Scholar 

  24. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    PubMed  CAS  Google Scholar 

  25. Ricciardi MJ, Wu E, Davidson CJ, Choi KM, Klocke FJ, Bonow RO, Judd RM, Kim RJ (2001) Visualization of discrete microinfarction after percutaneous coronary intervention associated with mild creatine kinase-mb elevation. Circulation 103:2780–2783

    Article  PubMed  CAS  Google Scholar 

  26. Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, Schnackenburg B, Delius W, Mudra H, Wolfram D, Schwaiger M (2002) Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 105:162–167

    Article  PubMed  Google Scholar 

  27. Sievers B, Elliott MD, Hurwitz LM, Albert TS, Klem I, Rehwald WG, Parker MA, Judd RM, Kim RJ (2007) Rapid detection of myocardial infarction by subsecond, free-breathing delayed contrast-enhancement cardiovascular magnetic resonance. Circulation 115:236–244

    Article  PubMed  Google Scholar 

  28. Rogers WJ Jr, Kramer CM, Geskin G, Hu YL, Theobald TM, Vido DA, Petruolo S, Reichek N (1999) Early contrast-enhanced mri predicts late functional recovery after reperfused myocardial infarction. Circulation 99:744–750

    PubMed  Google Scholar 

  29. Aletras AH, Tilak GS, Natanzon A, Hsu LY, Gonzalez FM, Hoyt RF Jr, Arai AE (2006) Retrospective determination of the area at risk for reperfused acute myocardial infarction with t2-weighted cardiac magnetic resonance imaging: Histopathological and displacement encoding with stimulated echoes (dense) functional validations. Circulation 113:1865–1870

    Article  PubMed  Google Scholar 

  30. Wellnhofer E, Olariu A, Klein C, Grafe M, Wahl A, Fleck E, Nagel E (2004) Magnetic resonance low-dose dobutamine test is superior to scar quantification for the prediction of functional recovery. Circulation 109:2172–2174

    Article  PubMed  Google Scholar 

  31. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  PubMed  CAS  Google Scholar 

  32. Hombach V, Grebe O, Merkle N, Waldenmaier S, Hoher M, Kochs M, Wohrle J, Kestler HA (2005) Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J 26:549–557

    Article  PubMed  Google Scholar 

  33. Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO (1990) Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 323:141–146

    Article  PubMed  CAS  Google Scholar 

  34. Perrone-Filardi P, Pace L, Prastaro M, Squame F, Betocchi S, Soricelli A, Piscione F, Indolfi C, Crisci T, Salvatore M, Chiariello M (1996) Assessment of myocardial viability in patients with chronic coronary artery disease. Rest-4-hour-24-hour 201tl tomography versus dobutamine echocardiography. Circulation 94:2712–2719

    PubMed  CAS  Google Scholar 

  35. Zimmermann R, Mall G, Rauch B, Zimmer G, Gabel M, Zehelein J, Bubeck B, Tillmanns H, Hagl S, Kubler W (1995) Residual 201tl activity in irreversible defects as a marker of myocardial viability. Clinicopathological study. Circulation 91:1016–1021

    PubMed  CAS  Google Scholar 

  36. Medrano R, Lowry RW, Young JB, Weilbaecher DG, Michael LH, Afridi I, He ZX, Mahmarian JJ, Verani MS (1996) Assessment of myocardial viability with 99 mtc sestamibi in patients undergoing cardiac transplantation. A scintigraphic/pathological study. Circulation 94:1010–1017

    PubMed  CAS  Google Scholar 

  37. Knapp FF Jr, Franken P, Kropp J (1995) Cardiac spect with iodine-123-labeled fatty acids: Evaluation of myocardial viability with bmipp. J Nucl Med 36:1022–1030

    PubMed  CAS  Google Scholar 

  38. Leoncini M, Marcucci G, Sciagra R, Frascarelli F, Simonetti I, Bini L, Maioli M, Mennuti A, Dabizzi RP (2001) Prediction of functional recovery in patients with chronic coronary artery disease and left ventricular dysfunction combining the evaluation of myocardial perfusion and of contractile reserve using nitrate-enhanced technetium-99 m sestamibi gated single-photon emission computed tomography and dobutamine stress. Am J Cardiol 87:1346–1350

    Article  PubMed  CAS  Google Scholar 

  39. Udelson JE, Coleman PS, Metherall J, Pandian NG, Gomez AR, Griffith JL, Shea NL, Oates E, Konstam MA (1994) Predicting recovery of severe regional ventricular dysfunction. Comparison of resting scintigraphy with 201tl and 99mtc-sestamibi. Circulation 89:2552–2561

    PubMed  CAS  Google Scholar 

  40. Bax JJ, Poldermans D, Elhendy A, Boersma E, Rahimtoola SH (2001) Sensitivity, specificity, and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr Probl Cardiol 26:147–186

    Article  PubMed  CAS  Google Scholar 

  41. Franken PR, De Geeter F, Dendale P, Demoor D, Block P, Bossuyt A (1994) Abnormal free fatty acid uptake in subacute myocardial infarction after coronary thrombolysis: correlation with wall motion and inotropic reserve. J Nucl Med 35:1758–1765

    PubMed  CAS  Google Scholar 

  42. Tamaki N, Kawamoto M, Yonekura Y, Fujibayashi Y, Takahashi N, Konishi J, Nohara R, Kambara H, Kawai C, Ikekubo K et al (1992) Regional metabolic abnormality in relation to perfusion and wall motion in patients with myocardial infarction: assessment with emission tomography using an iodinated branched fatty acid analog. J Nucl Med 33:659–667

    PubMed  CAS  Google Scholar 

  43. Dilsizian V, Bateman TM, Bergmann SR, Des Prez R, Magram MY, Goodbody AE, Babich JW, Udelson JE (2005) Metabolic imaging with beta-methyl-p-[(123)i]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation 112:2169–2174

    Article  PubMed  Google Scholar 

  44. Di Carli MF, Dorbala S, Meserve J, El Fakhri G, Sitek A, Moore SC (2007) Clinical myocardial perfusion pet/ct. J Nucl Med 48:783–793

    Article  PubMed  Google Scholar 

  45. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Gropler RJ, Knuuti J, Schelbert HR, Travin M (2008) Pet myocardial perfusion and metabolism clinical imaging. http://www.asnc.org/imageuploads/ImagingGuidelinesPETJuly2009.pdf

  46. Wolpers HG, Burchert W, van den Hoff J, Weinhardt R, Meyer GJ, Lichtlen PR (1997) Assessment of myocardial viability by use of 11c-acetate and positron emission tomography. Threshold criteria of reversible dysfunction. Circulation 95:1417–1424

    Google Scholar 

  47. Lautamaki R, Schuleri KH, Sasano T, Javadi MS, Youssef A, Merrill J, Nekolla SG, Abraham MR, Lardo AC, Bengel FM (2009) Integration of infarct size, tissue perfusion, and metabolism by hybrid cardiac positron emission tomography/computed tomography: Evaluation in a porcine model of myocardial infarction. Circ Cardiovasc Imaging 2:299–305

    Article  PubMed  Google Scholar 

  48. Di Carli MF (2007) Myocardial viability assessment with pet and pet/ct: In cardiac pet and pet/ct imaging. Springer, New York

  49. Carrel T, Jenni R, Haubold-Reuter S, von Schulthess G, Pasic M, Turina M (1992) Improvement of severely reduced left ventricular function after surgical revascularization in patients with preoperative myocardial infarction. Eur J Cardiothorac Surg 6:479–484

    Article  PubMed  CAS  Google Scholar 

  50. Grandin C, Wijns W, Melin JA, Bol A, Robert AR, Heyndrickx GR, Michel C, Vanoverschelde JL (1995) Delineation of myocardial viability with pet. J Nucl Med 36:1543–1552

    PubMed  CAS  Google Scholar 

  51. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, Schelbert H (1986) Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 314:884–888

    Article  PubMed  CAS  Google Scholar 

  52. Di Carli MF, Asgarzadie F, Schelbert HR, Brunken RC, Laks H, Phelps ME, Maddahi J (1995) Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 92:3436–3444

    PubMed  CAS  Google Scholar 

  53. Beanlands RS, Ruddy TD, deKemp RA, Iwanochko RM, Coates G, Freeman M, Nahmias C, Hendry P, Burns RJ, Lamy A, Mickleborough L, Kostuk W, Fallen E, Nichol G (2002) Positron emission tomography and recovery following revascularization (parr-1): the importance of scar and the development of a prediction rule for the degree of recovery of left ventricular function. J Am Coll Cardiol 40:1735–1743

    Google Scholar 

  54. Yamaguchi A, Ino T, Adachi H, Murata S, Kamio H, Okada M, Tsuboi J (1998) Left ventricular volume predicts postoperative course in patients with ischemic cardiomyopathy. Ann Thorac Surg 65:434–438

    Article  PubMed  CAS  Google Scholar 

  55. Tarakji KG, Brunken R, McCarthy PM, Al-Chekakie MO, Abdel-Latif A, Pothier CE, Blackstone EH, Lauer MS (2006) Myocardial viability testing and the effect of early intervention in patients with advanced left ventricular systolic dysfunction. Circulation 113:230–237

    Article  PubMed  Google Scholar 

  56. Beanlands RS, Hendry PJ, Masters RG, deKemp RA, Woodend K, Ruddy TD (1998) Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation 98:II51–II56

    Google Scholar 

  57. Al-Mallah MH, Sitek A, Moore SC, Di Carli M, Dorbala S (2010) Assessment of myocardial perfusion and function with pet and pet/ct. J Nucl Cardiol 17:498–513

    Article  PubMed  Google Scholar 

  58. Bax JJ, Cornel JH, Visser FC, Fioretti PM, van Lingen A, Huitink JM, Kamp O, Nijland F, Roelandt JR, Visser CA (1997) Prediction of improvement of contractile function in patients with ischemic ventricular dysfunction after revascularization by fluorine-18 fluorodeoxyglucose single-photon emission computed tomography. J Am Coll Cardiol 30:377–383

    Article  PubMed  CAS  Google Scholar 

  59. Bax JJ, Cornel JH, Visser FC, Fioretti PM, van Lingen A, Reijs AE, Boersma E, Teule GJ, Visser CA (1996) Prediction of recovery of myocardial dysfunction after revascularization. Comparison of fluorine-18 fluorodeoxyglucose/thallium-201 spect, thallium-201 stress-reinjection spect and dobutamine echocardiography. J Am Coll Cardiol 28:558–564

    Article  PubMed  CAS  Google Scholar 

  60. Nekolla SG, Reder S, Saraste A, Higuchi T, Dzewas G, Preissel A, Huisman M, Poethko T, Schuster T, Yu M, Robinson S, Casebier D, Henke J, Wester HJ, Schwaiger M (2009) Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18f-bms-747158–02: Comparison to 13n-ammonia and validation with microspheres in a pig model. Circulation 119:2333–2342

    Article  PubMed  CAS  Google Scholar 

  61. Kuhl HP, Lipke CS, Krombach GA, Katoh M, Battenberg TF, Nowak B, Heussen N, Buecker A, Schaefer WM (2006) Assessment of reversible myocardial dysfunction in chronic ischaemic heart disease: comparison of contrast-enhanced cardiovascular magnetic resonance and a combined positron emission tomography-single photon emission computed tomography imaging protocol. Eur Heart J 27:846–853

    Article  PubMed  Google Scholar 

  62. Achenbach S (2007) Cardiac ct: state of the art for the detection of coronary arterial stenosis. J Cardiovasc Comput Tomogr 1:3–20

    Article  PubMed  Google Scholar 

  63. Lardo AC, Cordeiro MA, Silva C, Amado LC, George RT, Saliaris AP, Schuleri KH, Fernandes VR, Zviman M, Nazarian S, Halperin HR, Wu KC, Hare JM, Lima JA (2006) Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 113:394–404

    Article  PubMed  Google Scholar 

  64. Brodoefel H, Klumpp B, Reimann A, Fenchel M, Heuschmid M, Miller S, Schroeder S, Claussen C, Scheule AM, Kopp AF (2007) Sixty-four-msct in the characterization of porcine acute and subacute myocardial infarction: determination of transmurality in comparison to magnetic resonance imaging and histopathology. Eur J Radiol 62:235–246

    Article  PubMed  CAS  Google Scholar 

  65. Gerber BL, Belge B, Legros GJ, Lim P, Poncelet A, Pasquet A, Gisellu G, Coche E, Vanoverschelde JL (2006) Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 113:823–833

    Article  PubMed  Google Scholar 

  66. Inaba Y, Chen JA, Bergmann SR (2010) Quantity of viable myocardium required to improve survival with revascularization in patients with ischemic cardiomyopathy: a meta-analysis. J Nucl Cardiol 17:646–654

    Article  PubMed  Google Scholar 

  67. Dilsizian V (2007) Cardiac magnetic resonance versus spect: are all noninfarct myocardial regions created equal? J Nucl Cardiol 14:9–14

    Article  PubMed  Google Scholar 

  68. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE (2002) Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 39:1151–1158

    Article  PubMed  Google Scholar 

  69. Canty JM Jr, Suzuki G, Banas MD, Verheyen F, Borgers M, Fallavollita JA (2004) Hibernating myocardium: chronically adapted to ischemia but vulnerable to sudden death. Circ Res 94:1142–1149

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila Dorbala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Partington, S.L., Kwong, R.Y. & Dorbala, S. Multimodality imaging in the assessment of myocardial viability. Heart Fail Rev 16, 381–395 (2011). https://doi.org/10.1007/s10741-010-9201-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-010-9201-7

Keywords

Navigation