Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nontraditional risk factors for cardiovascular disease in patients with chronic kidney disease

Abstract

Patients with chronic kidney disease (CKD) have a reduced lifespan, and a substantial proportion of these individuals die from cardiovascular disease. Although a large percentage of patients with CKD have traditional cardiac risk factors such as diabetes, hypertension and abnormalities in cholesterol, interventions to address these factors—which have significantly decreased cardiovascular mortality in the general population—have not shown such benefit in the CKD population. In addition, the severity and extent of cardiovascular complications in patients with CKD is disproportionate to the number and severity of traditional risk factors. This realization has focused attention on nontraditional cardiac risk factors that are particularly relevant to patients with CKD, including decreased hemoglobin levels, microalbuminuria, increased inflammation and oxidative stress, and abnormalities in bone and mineral metabolism. However, large prospective trials in patients with advanced CKD or in those requiring chronic dialysis have not shown that normalization of these nontraditional risk factors improves survival. Moreover, the mechanisms by which these nontraditional risk factors contribute to cardiovascular disease are unknown. Therefore, although current treatment of patients with CKD includes management of traditional and nontraditional risk factors, the value of modifying some nontraditional risk factors remains unclear.

Key Points

  • Patients with chronic kidney disease (CKD) have a very high risk of cardiovascular events and death

  • Patients with CKD have a high prevalence of traditional and nontraditional cardiac risk factors

  • Nontraditional cardiac risk factors, including anemia, inflammation, oxidative stress and hyperphosphatemia, are associated with cardiovascular disease in patients with CKD

  • The mechanisms by which these nontraditional risk factors contribute to cardiovascular disease in CKD are not well understood

  • Treatment of CKD includes management of traditional and nontraditional cardiovascular risk factors, but the value of modifying some nontraditional risk factors remains unclear

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Coresh J et al. (2003) Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis 41: 1–12

    Article  PubMed  Google Scholar 

  2. Xue JL et al. (2001) Forecast of the number of patients with end-stage renal disease in the United States to the year 2010. J Am Soc Nephrol 12: 2753–2758

    Article  CAS  PubMed  Google Scholar 

  3. Coresh J et al. (2007) Prevalence of chronic kidney disease in the United States. JAMA 298: 2038–2047

    Article  CAS  PubMed  Google Scholar 

  4. Keith DS et al. (2004) Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med 164: 659–663

    Article  PubMed  Google Scholar 

  5. Cheung AK et al. (2004) Cardiac diseases in maintenance hemodialysis patients: results of the HEMO Study. Kidney Int 65: 2380–2389

    Article  PubMed  Google Scholar 

  6. Go AS et al. (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351: 1296–1305

    Article  CAS  PubMed  Google Scholar 

  7. Stenvinkel P et al. (2003) Coronary artery disease in end-stage renal disease: no longer a simple plumbing problem. J Am Soc Nephrol 14: 1927–1939

    Article  PubMed  Google Scholar 

  8. Kannel WB et al. (1961) Factors of risk in the development of coronary heart disease–six year follow-up experience: the Framingham Study. Ann Intern Med 55: 33–50

    Article  CAS  PubMed  Google Scholar 

  9. Vlagopoulos PT and Sarnak MJ (2005) Traditional and nontraditional cardiovascular risk factors in chronic kidney disease. Med Clin North Am 89: 587–611

    Article  PubMed  Google Scholar 

  10. Reis SE et al. (2002) Mild renal insufficiency is associated with angiographic coronary artery disease in women. Circulation 105: 2826–2829

    Article  PubMed  Google Scholar 

  11. Parfrey PS and Foley RN (1999) The clinical epidemiology of cardiac disease in chronic renal failure. J Am Soc Nephrol 10: 1606–1615

    Article  CAS  PubMed  Google Scholar 

  12. Weiner DE et al. (2008) The relationship between nontraditional risk factors and outcomes in individuals with stage 3 to 4 CKD. Am J Kidney Dis 51: 212–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shlipak MG et al. (2004) Chronic renal insufficiency and cardiovascular events in the elderly: findings from the Cardiovascular Health Study. Am J Geriatr Cardiol 13: 81–90

    Article  PubMed  Google Scholar 

  14. Ritz E and McClellan WM (2004) Overview: increased cardiovascular risk in patients with minor renal dysfunction: an emerging issue with far-reaching consequences. J Am Soc Nephrol 15: 513–516

    Article  PubMed  Google Scholar 

  15. Appel LJ (2004) Beyond (or back to) traditional risk factors: preventing cardiovascular disease in patients with chronic kidney disease. Ann Intern Med 140: 60–61

    Article  PubMed  Google Scholar 

  16. Agewall S et al. (1997) Usefulness of microalbuminuria in predicting cardiovascular mortality in treated hypertensive men with and without diabetes mellitus: Risk Factor Intervention Study Group. Am J Cardiol 80: 164–169

    Article  CAS  PubMed  Google Scholar 

  17. Dinneen SF and Gerstein HC (1997) The association of microalbuminuria and mortality in non-insulin-dependent diabetes mellitus: a systematic overview of the literature. Arch Intern Med 157: 1413–1418

    Article  CAS  PubMed  Google Scholar 

  18. Gerstein HC et al. (2001) Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 286: 421–426

    Article  CAS  PubMed  Google Scholar 

  19. Wachtell K et al. (2003) Albuminuria and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study. Ann Intern Med 139: 901–906

    Article  PubMed  Google Scholar 

  20. Pedrinelli R et al. (2004) Low-grade inflammation and microalbuminuria in hypertension. Arterioscler Thromb Vasc Biol 24: 2414–2419

    Article  CAS  PubMed  Google Scholar 

  21. Clausen P et al. (2001) Elevated urinary albumin excretion is associated with impaired arterial dilatory capacity in clinically healthy subjects. Circulation 103: 1869–1874

    Article  CAS  PubMed  Google Scholar 

  22. Pedrinelli R et al. (1994) Microalbuminuria and endothelial dysfunction in essential hypertension. Lancet 344: 14–18

    Article  CAS  PubMed  Google Scholar 

  23. Persson F et al. (2008) Endothelial dysfunction and inflammation predict development of diabetic nephropathy in the Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria (IRMA 2) study. Scand J Clin Lab Invest [10.1080/00365510802187226]

  24. Cottone S et al. (2007) Microalbuminuria and early endothelial activation in essential hypertension. J Hum Hypertens 21: 167–172

    Article  CAS  PubMed  Google Scholar 

  25. Dell'Omo G et al. (2007) Lack of association between endothelial nitric oxide synthase gene polymorphisms, microalbuminuria, and endothelial dysfunction in hypertensive men. J Hypertens 25: 1389–1395

    Article  CAS  PubMed  Google Scholar 

  26. Bianchi S et al. (1999) Microalbuminuria in essential hypertension: significance, pathophysiology, and therapeutic implications. Am J Kidney Dis 34: 973–995

    Article  CAS  PubMed  Google Scholar 

  27. Freedman BI et al. (2005) Relationship between albuminuria and cardiovascular disease in type 2 diabetes. J Am Soc Nephrol 16: 2156–2161

    Article  CAS  PubMed  Google Scholar 

  28. Barzilay JI et al. (2004) The relationship of cardiovascular risk factors to microalbuminuria in older adults with or without diabetes mellitus or hypertension: the Cardiovascular Health Study. Am J Kidney Dis 44: 25–34

    Article  PubMed  Google Scholar 

  29. Asselbergs FW et al. (2004) Effects of fosinopril and pravastatin on cardiovascular events in subjects with microalbuminuria. Circulation 110: 2809–2816

    Article  CAS  PubMed  Google Scholar 

  30. The Heart Outcomes Prevention Evaluation Study Investigators (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 342: 145–153

  31. Kazmi WH et al. (2001) Anemia: an early complication of chronic renal insufficiency. Am J Kidney Dis 38: 803–812

    Article  CAS  PubMed  Google Scholar 

  32. Levin A et al. (1999) Left ventricular mass index increase in early renal disease: impact of decline in hemoglobin. Am J Kidney Dis 34: 125–134

    Article  CAS  PubMed  Google Scholar 

  33. Jurkovitz CT et al. (2003) Association of high serum creatinine and anemia increases the risk of coronary events: results from the prospective community-based atherosclerosis risk in communities (ARIC) study. J Am Soc Nephrol 14: 2919–2925

    Article  CAS  PubMed  Google Scholar 

  34. Sarnak MJ et al. (2002) Anemia as a risk factor for cardiovascular disease in the Atherosclerosis Risk in Communities (ARIC) study. J Am Coll Cardiol 40: 27–33

    Article  PubMed  Google Scholar 

  35. Foley RN et al. (1996) The impact of anemia on cardiomyopathy, morbidity, and and mortality in end-stage renal disease. Am J Kidney Dis 28: 53–61

    Article  CAS  PubMed  Google Scholar 

  36. Levin A et al. (1996) Prevalent left ventricular hypertrophy in the predialysis population: identifying opportunities for intervention. Am J Kidney Dis 27: 347–354

    Article  CAS  PubMed  Google Scholar 

  37. Weiner DE et al. (2005) Effects of anemia and left ventricular hypertrophy on cardiovascular disease in patients with chronic kidney disease. J Am Soc Nephrol 16: 1803–1810

    Article  PubMed  Google Scholar 

  38. Besarab A et al. (1998) The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med 339: 584–590

    Article  CAS  PubMed  Google Scholar 

  39. Singh AK et al. (2006) Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med 355: 2085–2098

    Article  CAS  PubMed  Google Scholar 

  40. Drueke TB et al. (2006) Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med 355: 2071–2084

    Article  CAS  PubMed  Google Scholar 

  41. Roger SD et al. (2004) Effects of early and late intervention with epoetin alpha on left ventricular mass among patients with chronic kidney disease (stage 3 or 4): results of a randomized clinical trial. J Am Soc Nephrol 15: 148–156

    Article  CAS  PubMed  Google Scholar 

  42. Ritz E et al. (2007) Target level for hemoglobin correction in patients with diabetes and CKD: primary results of the Anemia Correction in Diabetes (ACORD) Study. Am J Kidney Dis 49: 194–207

    Article  CAS  PubMed  Google Scholar 

  43. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39: S1–S266

  44. Rao M and Pereira BJ (2003) Prospective trials on anemia of chronic disease: the Trial to Reduce Cardiovascular Events with Aranesp Therapy (TREAT). Kidney Int Suppl 87: S12–S19

    Article  Google Scholar 

  45. Diaz MN et al. (1997) Antioxidants and atherosclerotic heart disease. N Engl J Med 337: 408–416

    Article  CAS  PubMed  Google Scholar 

  46. Granger DN et al. (2004) Modulation of the inflammatory response in cardiovascular disease. Hypertension 43: 924–931

    Article  CAS  PubMed  Google Scholar 

  47. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340: 115–126

    Article  CAS  PubMed  Google Scholar 

  48. Oberg BP et al. (2004) Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int 65: 1009–1016

    Article  PubMed  Google Scholar 

  49. Shlipak MG et al. (2003) Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. Circulation 107: 87–92

    Article  CAS  PubMed  Google Scholar 

  50. Cheung AK et al. (2000) Atherosclerotic cardiovascular disease risks in chronic hemodialysis patients. Kidney Int 58: 353–362

    Article  CAS  PubMed  Google Scholar 

  51. Zimmermann J et al. (1999) Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int 55: 648–658

    Article  CAS  PubMed  Google Scholar 

  52. Yeun JY et al. (2000) C-reactive protein predicts all-cause and cardiovascular mortality in hemodialysis patients. Am J Kidney Dis 35: 469–476

    Article  CAS  PubMed  Google Scholar 

  53. Iseki K et al. (1999) Serum C-reactive protein (CRP) and risk of death in chronic dialysis patients. Nephrol Dial Transplant 14: 1956–1960

    Article  CAS  PubMed  Google Scholar 

  54. Wang AY et al. (2008) Increased circulating inflammatory proteins predict a worse prognosis with valvular calcification in end-stage renal disease: a prospective cohort study. Am J Nephrol 28: 647–653

    Article  CAS  PubMed  Google Scholar 

  55. Menon V et al. (2005) C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease. Kidney Int 68: 766–772

    Article  CAS  PubMed  Google Scholar 

  56. Friedman AN et al. (2005) C-reactive protein as a predictor of total arteriosclerotic outcomes in type 2 diabetic nephropathy. Kidney Int 68: 773–778

    Article  CAS  PubMed  Google Scholar 

  57. Shlipak MG et al. (2005) Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors. JAMA 293: 1737–1745

    Article  CAS  PubMed  Google Scholar 

  58. Ravani P et al. (2005) Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: a competing risks modeling approach. J Am Soc Nephrol 16: 2449–2455

    Article  CAS  PubMed  Google Scholar 

  59. Fried LF et al. (2005) Kidney function as a predictor of noncardiovascular mortality. J Am Soc Nephrol 16: 3728–3735

    Article  CAS  PubMed  Google Scholar 

  60. Fliser D et al. (2005) Asymmetric dimethylarginine and progression of chronic kidney disease: the mild to moderate kidney disease study. J Am Soc Nephrol 16: 2456–2461

    Article  CAS  PubMed  Google Scholar 

  61. Valkonen VP et al. (2001) Risk of acute coronary events and serum concentration of asymmetrical dimethylarginine. Lancet 358: 2127–2128

    Article  CAS  PubMed  Google Scholar 

  62. Zoccali C et al. (2001) Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet 358: 2113–2117

    Article  CAS  PubMed  Google Scholar 

  63. Drexler H et al. (1991) Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet 338: 1546–1550

    Article  CAS  PubMed  Google Scholar 

  64. Lerman A et al. (1998) Long-term L-arginine supplementation improves small-vessel coronary endothelial function in humans. Circulation 97: 2123–2128

    Article  CAS  PubMed  Google Scholar 

  65. Boaz M et al. (2000) Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet 356: 1213–1218

    Article  CAS  PubMed  Google Scholar 

  66. Tepel M et al. (2003) The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure: a randomized, controlled trial. Circulation 107: 992–995

    Article  CAS  PubMed  Google Scholar 

  67. Arnadottir M et al. (1996) The effect of reduced glomerular filtration rate on plasma total homocysteine concentration. Scand J Clin Lab Invest 56: 41–46

    Article  CAS  PubMed  Google Scholar 

  68. Friedman AN et al. (2001) The kidney and homocysteine metabolism. J Am Soc Nephrol 12: 2181–2189

    Article  CAS  PubMed  Google Scholar 

  69. McCully KS (1969) Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 56: 111–128

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hofmann MA et al. (2001) Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest 107: 675–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bostom AG et al. (1997) Elevated fasting total plasma homocysteine levels and cardiovascular disease outcomes in maintenance dialysis patients: a prospective study. Arterioscler Thromb Vasc Biol 17: 2554–2558

    Article  CAS  PubMed  Google Scholar 

  72. Jungers P et al. (1997) Hyperhomocysteinemia is associated with atherosclerotic occlusive arterial accidents in predialysis chronic renal failure patients. Miner Electrolyte Metab 23: 170–173

    CAS  PubMed  Google Scholar 

  73. Bonaa KH et al. (2006) Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med 354: 1578–1588

    Article  CAS  PubMed  Google Scholar 

  74. Lonn E et al. (2006) Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 354: 1567–1577

    Article  CAS  PubMed  Google Scholar 

  75. Toole JF et al. (2004) Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA 291: 565–575

    Article  CAS  PubMed  Google Scholar 

  76. Jamison RL et al. (2007) Effect of homocysteine lowering on mortality and vascular disease in advanced chronic kidney disease and end-stage renal disease: a randomized controlled trial. JAMA 298: 1163–1170

    Article  CAS  PubMed  Google Scholar 

  77. Mann JF et al. (2008) Homocysteine lowering with folic acid and B vitamins in people with chronic kidney disease—results of the renal Hope-2 study. Nephrol Dial Transplant 23: 645–653

    Article  CAS  PubMed  Google Scholar 

  78. Levin A et al. (2007) Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int 71: 31–38

    Article  CAS  PubMed  Google Scholar 

  79. Block GA et al. (1998) Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis 31: 607–617

    Article  CAS  PubMed  Google Scholar 

  80. Ganesh SK et al. (2001) Association of elevated serum PO(4), Ca x PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol 12: 2131–2138

    Article  CAS  PubMed  Google Scholar 

  81. Kestenbaum B et al. (2005) Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 16: 520–528

    Article  CAS  PubMed  Google Scholar 

  82. Dhingra R et al. (2007) Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med 167: 879–885

    Article  CAS  PubMed  Google Scholar 

  83. Tonelli M et al. (2005) Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation 112: 2627–2633

    Article  CAS  PubMed  Google Scholar 

  84. Raggi P et al. (2002) Cardiac calcification in adult hemodialysis patients: a link between end-stage renal disease and cardiovascular disease? J Am Coll Cardiol 39: 695–701

    Article  PubMed  Google Scholar 

  85. Goodman WG et al. (2000) Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 342: 1478–1483

    Article  CAS  PubMed  Google Scholar 

  86. Stack AG and Saran R (2002) Clinical correlates and mortality impact of left ventricular hypertrophy among new ESRD patients in the United States. Am J Kidney Dis 40: 1202–1210

    Article  PubMed  Google Scholar 

  87. Hedback G and Oden A (1998) Death risk factor analysis in primary hyperparathyroidism. Eur J Clin Invest 28: 1011–1018

    Article  CAS  PubMed  Google Scholar 

  88. Saleh FN et al. (2003) Parathyroid hormone and left ventricular hypertrophy. Eur Heart J 24: 2054–2060

    Article  CAS  PubMed  Google Scholar 

  89. Guerin AP et al. (2000) Arterial stiffening and vascular calcifications in end-stage renal disease. Nephrol Dial Transplant 15: 1014–1021

    Article  CAS  PubMed  Google Scholar 

  90. Qunibi W et al. (2008) A 1-year randomized trial of calcium acetate vs sevelamer on progression of coronary artery calcification in hemodialysis patients with comparable lipid control: the Calcium Acetate Renagel Evaluation-2 (CARE-2) study. Am J Kidney Dis 51: 952–965

    Article  CAS  PubMed  Google Scholar 

  91. Block GA et al. (2007) Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int 71: 438–441

    Article  CAS  PubMed  Google Scholar 

  92. Suki W et al. (2007) Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int 72: 1130–1137

    Article  CAS  PubMed  Google Scholar 

  93. Bakris GL et al. (2006) Beta blockers in the management of chronic kidney disease. Kidney Int 70: 1905–1913

    Article  CAS  PubMed  Google Scholar 

  94. Packer M (2001) Current role of beta-adrenergic blockers in the management of chronic heart failure. Am J Med 110 (Suppl 7A): S81–S94

    Article  Google Scholar 

  95. Welten GM et al. (2007) Beta-blockers improve outcomes in kidney disease patients having noncardiac vascular surgery. Kidney Int 72: 1527–1534

    Article  CAS  PubMed  Google Scholar 

  96. Foley RN et al. (2002) Blood pressure and long-term mortality in United States hemodialysis patients: USRDS Waves 3 and 4 Study. Kidney Int 62: 1784–1790

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel B Chonchol.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kendrick, J., Chonchol, M. Nontraditional risk factors for cardiovascular disease in patients with chronic kidney disease. Nat Rev Nephrol 4, 672–681 (2008). https://doi.org/10.1038/ncpneph0954

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0954

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing