Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transthyretin-related amyloidoses and the heart: a clinical overview

Abstract

A nonhereditary form of systemic amyloidosis associated with wild-type transthyretin causes heart involvement predominantly in elderly men (systemic senile amyloidosis, or SSA). However, hereditary transthyretin-related amyloidosis (ATTR) is the most frequent form of familial systemic amyloidosis, a group of severe diseases with variable neurological and organ involvement. ATTR remains a challenging and widely underdiagnosed condition, owing to its extreme phenotypic variability: the clinical spectrum of the disease ranges from an almost exclusive neurologic involvement to a strictly cardiac presentation. Such heterogeneity principally results from differential effects of the various reported transthyretin mutations, the geographic region the patient is from and, in the case of the most common mutation, Val30Met, whether or not large foci of cases occur (endemic versus nonendemic aggregation). Genetic or environmental factors (such as age, sex, and amyloid fibril composition) also contribute to the heterogeneity of ATTR, albeit to a lesser extent. The existence of exclusively or predominantly cardiac phenotypes should lead clinicians to consider the possibility of ATTR in all patients who present with an unexplained increase in left ventricular wall thickness at echocardiography. Assessment of such patients should include an active search for possible red flags that can point to the correct final diagnosis.

Key Points

  • Amyloidotic cardiomyopathy is a challenging condition that can mimic many other diseases, such as hypertrophic cardiomyopathy or coronary artery disease

  • Hereditary transthyretin-related amyloidosis (ATTR) is the most frequent form of familial systemic amyloidosis

  • The clinical spectrum of ATTR ranges from almost exclusive neurologic involvement within a clearly familial context, to apparently sporadic cases with a strictly cardiac presentation

  • Phenotypic heterogeneity is linked to at least three different factors: the type of transthyretin mutation, geographic region, and the type of Val30Met aggregation (endemic or nonendemic)

  • Diagnosis of ATTR-related amyloidotic cardiomyopathy generally involves electrocardiography and echocardiography; the specific clinical signs can be very mild and may be missed by the patient

  • Orthotopic liver transplantation or combined heart–liver transplantation can provide surgical 'gene therapy' for amyloidotic cardiomyopathy; the combined procedure can be offered to patients with severe heart failure

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative findings in ATTR cardiomyopathy.
Figure 2: Main known determinants of phenotypic variability in ATTR.

Similar content being viewed by others

References

  1. Falk, R. H. & Dubrey, S. W. Amyloid heart disease. Prog. Cardiovasc. Dis. 52, 347–361 (2010).

    Article  PubMed  Google Scholar 

  2. Shah, K. B., Inoue, Y. & Mehra, M. R. Amyloidosis and the heart: a comprehensive review. Arch. Intern. Med. 166, 1805–1813 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Maron, B. J. et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807–1816 (2006).

    Article  PubMed  Google Scholar 

  4. Elliott, P. et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on myocardial and pericardial diseases. Eur. Heart J. 29, 270–276 (2008).

    Article  PubMed  Google Scholar 

  5. Westermark, P. et al. A primer of amyloid nomenclature. Amyloid 14, 179–183 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Planté-Bordeneuve, V. et al. Diagnostic pitfalls in sporadic transthyretin familial amyloid polyneuropathy (TTR-FAP). Neurology 69, 693–698 (2007).

    Article  PubMed  Google Scholar 

  7. Rapezzi, C. et al. Phenotypic and genotypic heterogeneity in transthyretin-related cardiac amyloidosis: towards tailoring of therapeutic strategies? Amyloid 13, 143–153 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Lachmann, H. J. et al. Misdiagnosis of hereditary amyloidosis as AL (primary) amyloidosis. N. Engl. J. Med. 346, 1786–1791 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. The BEST Steering Committee. Design of the Beta-Blocker Evaluation Survival Trial (BEST). Am. J. Cardiol. 75, 1220–1223 (1995).

  10. Herlenius, G., Wilczek, H. E., Larsson, M., Ericzon, B. G. & Familial Amyloidotic Polyneuropathy World Transplant Registry. Ten years of international experience with liver transplantation for familial amyloidotic polyneuropathy: results from the Familial Amyloidotic Polyneuropathy World Transplant Registry. Transplantation 77, 64–71 (2004).

    Article  PubMed  Google Scholar 

  11. Sekijima, Y., Kelly, J. W. & Ikeda, S. Pathogenesis of and therapeutic strategies to ameliorate the transthyretin amyloidoses. Curr. Pharm. Des. 14, 3219–3230 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Dickson, P. W. et al. High prealbumin and transferrin mRNA levels in the choroid plexus of rat brain. Biochem. Biophys. Res. Commun. 127, 890–895 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Robbins, J. Thyroxine binding proteins. Prog. Clin. Biol. Res. 5, 331–355 (1976).

    CAS  PubMed  Google Scholar 

  14. Benson, M. D. & Kincaid, J. C. The molecular biology and clinical features of amyloid neuropathy. Muscle Nerve 36, 411–423 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Westermark, P., Sletten, K., Johansson, B. & Cornwell, G. G. Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proc. Natl Acad. Sci. USA 87, 2843–2845 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hou, X., Aguilar, M. I. & Small, D. H. Transthyretin and familial amyloidotic polyneuropathy. Recent progress in understanding the molecular mechanism of neurodegeneration. FEBS J. 274, 1637–1650 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Ando, Y., Nakamura, M. & Araki, S. Transthyretin-related familial amyloidotic polyneuropathy. Arch. Neurol. 62, 1057–1062 (2005).

    Article  PubMed  Google Scholar 

  18. Rapezzi, C. et al. Systemic cardiac amyloidoses. Disease profiles and clinical courses of the three main types. Circulation 120, 1203–1212 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Dubrey, S. W., Burke, M. M., Hawkins, P. N. & Banner, N. R. Cardiac transplantation for amyloid heart disease—the United Kingdom experience. J. Heart Lung Transplant. 23, 1142–1153 (2004).

    Article  PubMed  Google Scholar 

  20. Lessell, S., Wolf, P. A., Benson, M. D. & Cohen, A. S. Scalloped pupils in familial amyloidosis. N. Engl. J. Med. 293, 914–915 (1975).

    Article  CAS  PubMed  Google Scholar 

  21. Ikeda, S. Cardiac amyloidosis: heterogenous pathogenic backgrounds. Intern. Med. 43, 1107–1114 (2004).

    Article  PubMed  Google Scholar 

  22. Koyama, J. et al. Usefulness of pulsed tissue Doppler imaging for evaluating systolic and diastolic left ventricular function in patients with AL (primary) amyloidosis. Am. J. Cardiol. 89, 1067–1071 (2002).

    Article  PubMed  Google Scholar 

  23. Klein, A. L. et al. Doppler characterization of left ventricular diastolic function in cardiac amyloidosis. J. Am. Coll. Cardiol. 13, 1017–1026 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Andrade, C. A peculiar form of peripheral neuropathy. Familial atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain 75, 408–427 (1952).

    Article  CAS  PubMed  Google Scholar 

  25. Conceição, I. & De Carvalho, M. Clinical variability in type I familial amyloid polyneuropathy (Val30Met): comparison between late- and early-onset cases in Portugal. Muscle Nerve 35, 116–118 (2007).

    Article  PubMed  Google Scholar 

  26. Bittencourt, P. L. et al. Phenotypic expression of familial amyloid polyneuropathy in Brazil. Eur. J. Neurol. 12, 289–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Ikeda, S., Nakazato, M., Ando, Y. & Sobue, G. Familial transthyretin-type amyloid polyneuropathy in Japan: clinical and genetic heterogeneity. Neurology 58, 1001–1007 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Suhr, O. B. et al. Hereditary transthyretin amyloidosis from a Scandinavian perspective. J. Intern. Med. 254, 225–235 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Ohmori, H. et al. Common origin of the Val30Met mutation responsible for the amyloidogenic transthyretin type of familial amyloidotic polyneuropathy. J. Med. Genet. 41, 51–55 (2004).

    Article  Google Scholar 

  30. Soares, M. L. et al. Haplotypes and DNA sequence variation within and surrounding the transthyretin gene: genotype–phenotype correlations in familial amyloid polyneuropathy (V30M) in Portugal and Sweden. Eur. J. Hum. Genet. 12, 225–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Hellman, U. et al. Heterogeneity of penetrance in familial amyloid polyneuropathy, ATTR Val30Met, in the Swedish population. Amyloid 15, 181–186 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jacobson, D. R. et al. Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in black Americans. N. Engl. J. Med. 336, 466–473 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Koeppen, A. H., Wallace, M. R., Benson, M. D. & Altland, K. Familial amyloid polyneuropathy: alanine-for-threonine substitution in the transthyretin (prealbumin) molecule. Muscle Nerve 13, 1065–1075 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Yamamoto, K. et al. Familial amyloid polyneuropathy in Taiwan: identification of transthyretin variant (Leu55>Pro). Muscle Nerve 17, 637–641 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Mak, C. M. et al. Identification of a novel TTR Gly67Glu mutant and the first case series of familial transthyretin amyloidosis in Hong Kong Chinese. Amyloid 14, 293–297 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Jacobson, D. R. et al. Revised transthyretin Ile122 allele frequency in African-Americans. Hum. Genet. 98, 236–238 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Svendsen, I. H., Steensgaard-Hansen, F. & Nordvåg, B. Y. Hereditary amyloid cardiomyopathy related to a mutation at transthyretin protein number 111. A clinical, genetic and echocardiographic study of an affected Danish family. Ugeskr. Laeger. 161, 4995–4999 (1999).

    CAS  PubMed  Google Scholar 

  38. Plante-Bordeneuve, V. et al. Genotypic–phenotypic variations in a series of 65 patients with familial amyloid polyneuropathy. Neurology 51, 708–714 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Gillmore, J. D., Booth, D. R., Pepys, M. B., Hawkins, P. N. Hereditary cardiac amyloidosis associated with the transthyretin Ile122 mutation in a white man. Heart 82, e2 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rapezzi, C. et al. Gender-related risk of myocardial involvement in systemic amyloidosis. Amyloid 15, 40–48 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Ihse, E. et al. Amyloid fibril composition is related to the phenotype of hereditary transthyretin V30M amyloidosis. J. Pathol. 216, 253–261 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Rahman, J. E. et al. Noninvasive diagnosis of biopsy-proven cardiac amyloidosis. J. Am. Coll. Cardiol. 43, 410–415 (2004).

    Article  PubMed  Google Scholar 

  43. Murtagh, B. et al. Electrocardiographic findings in primary systemic amyloidosis and biopsy-proven cardiac involvement. Am. J. Cardiol. 95, 535–537 (2005).

    Article  PubMed  Google Scholar 

  44. Sun, J. P. et al. Differentiation of hypertrophic cardiomyopathy and cardiac amyloidosis from other causes of ventricular wall thickening by two-dimensional strain imaging echocardiography. Am. J. Cardiol. 103, 411–415 (2009).

    Article  PubMed  Google Scholar 

  45. Selvanayagam, J. B., Hawkins, P. N., Paul, B., Myerson, S. G. & Neubauer, S. Evaluation and management of the cardiac amyloidoses. J. Am. Coll. Cardiol. 50, 2101–2110 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Koyama, J., Davidoff, R. & Falk, R. H. Longitudinal myocardial velocity gradient derived from pulsed Doppler tissue imaging in AL amyloidosis: a sensitive indicator of systolic and diastolic dysfunction. J. Am. Soc. Echocardiogr. 17, 36–44 (2004).

    Article  PubMed  Google Scholar 

  47. Maceira, A. M. et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111, 186–193 (2005).

    Article  PubMed  Google Scholar 

  48. Perugini, E. et al. Non-invasive evaluation of the myocardial substrate of cardiac amyloidosis by gadolinium cardiac magnetic resonance. Heart 92, 343–349 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Glaudemans, A. W. et al. Nuclear imaging in cardiac amyloidosis. Eur. J. Nucl. Med. Mol. Imaging 36, 702–714 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Hazenberg, B. P. et al. Diagnostic performance and prognostic value of extravascular retention of 123I-labeled serum amyloid P component in systemic amyloidosis. J. Nucl. Med. 48, 865–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Gertz, M. A. et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th international symposium on amyloid and amyloidosis. Am. J. Hematol. 79, 319–328 (2005).

    Article  PubMed  Google Scholar 

  52. Kyle, R. A. & Gertz, M. A. Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin. Hematol. 32, 45–59 (1995).

    CAS  PubMed  Google Scholar 

  53. Merlini, G. & Palladini, G. Amyloidosis: is a cure possible? Ann. Oncol. 19, iv63–iv66 (2008).

    Article  PubMed  Google Scholar 

  54. Ng, B. et al. Senile systemic amyloidosis presenting with heart failure: a comparison with light chain-associated amyloidosis. Arch. Intern. Med. 165, 1425–1429 (2005).

    Article  PubMed  Google Scholar 

  55. Dubrey, S. W., Cha, K., Skinner, M., LaValley, M. & Falk, R. H. Familial and primary (AL) cardiac amyloidosis: echocardiographically similar diseases with distinctly different clinical outcomes. Heart 78, 74–82 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Berk, J. L. et al. Persistent pleural effusions in primary systemic amyloidosis: etiology and prognosis. Chest 124, 969–977 (2003).

    Article  PubMed  Google Scholar 

  57. Santarone, M. et al. Atrial thrombosis in cardiac amyloidosis: diagnostic contribution of transesophageal echocardiography. J. Am. Soc. Echocardiogr. 12, 533–536 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Gertz, M. A., Falk, R. H., Skinner, M., Cohen, A. S. & Kyle, R. A. Worsening of congestive heart failure in amyloid heart disease treated by calcium channel-blocking agents. Am. J. Cardiol. 55, 1645 (1985).

    Article  CAS  PubMed  Google Scholar 

  59. Pollak, A. & Falk, R. H. Left ventricular systolic dysfunction precipitated by verapamil in cardiac amyloidosis. Chest 104, 618–620 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Wright, B. L., Grace, A. A. & Goodman, H. J. Implantation of a cardioverter-defibrillator in a patient with cardiac amyloidosis. Nat. Clin. Pract. Cardiovasc. Med. 3, 110–114 (2006).

    Article  PubMed  Google Scholar 

  61. Becker, R., Katus, H. A. & Bauer, A. Prophylactic implantation of cardioverter-defibrillator in patients with severe cardiac amyloidosis and high risk for sudden cardiac death. Heart Rhythm 5, 235–240 (2008).

    Article  PubMed  Google Scholar 

  62. Falk, R. H., Rubinow, A. & Cohen, A. S. Cardiac arrhythmias in systemic amyloidosis: correlation with echocardiographic abnormalities. J. Am. Coll. Cardiol. 3, 107–113 (1984).

    Article  CAS  PubMed  Google Scholar 

  63. Freeman, R. Neurogenic orthostatic hypotension. N. Engl. J. Med. 358, 615–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Obayashi, K. et al. Effect of sildenafil citrate (Viagra) on erectile dysfunction in a patient with familial amyloidotic polyneuropathy ATTR Val30Met. Auton. Nerv. Syst. 12, 89–92 (2000).

    Article  Google Scholar 

  65. Dubrey, S. W. et al. Progression of ventricular wall thickening after liver transplantation for familial amyloidosis. Transplant 64, 74–80 (1997).

    Article  CAS  Google Scholar 

  66. Yazaki, M. et al. Cardiac amyloid in patients with familial amyloid polyneuropathy consists of abundant wild-type transthyretin. Biochem. Biophys. Res. Commun. 274, 702–706 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Stangou, A. J., Heaton, N. D. & Hawkins, P. N. Transmission of systemic transthyretin amyloidosis by means of domino liver transplantation. N. Engl. J. Med. 352, 2356 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Arpesella, G. et al. Combined heart and liver transplantation for familial amyloidotic polyneuropathy. J. Thorac. Cardiovasc. Surg. 125, 1165–1166 (2003).

    Article  PubMed  Google Scholar 

  69. Ferreira, N. et al. Binding of epigallocatechin-3-gallate to transthyretin modulates its amyloidogenicity. FEBS Lett. 583, 3569–3576 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Palladini, G. et al. Serum N-terminal pro-brain natriuretic peptide is a sensitive marker of myocardial dysfunction in AL amyloidosis. Circulation 107, 2440–2445 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Perugini, E. et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3, 3-diphosphono-1, 2-propanodicarboxylic acid scintigraphy. J. Am. Coll. Cardiol. 46, 1076–1084 (2005).

    Article  PubMed  Google Scholar 

  72. Dispenzieri, A. et al. Survival in patients with primary systemic amyloidosis and raised serum cardiac troponins. Lancet 361, 1787–1789 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Dispenzieri, A. et al. Prognostication of survival using cardiac troponins and N-terminal pro-brain natriuretic peptide in patients with primary systemic amyloidosis undergoing peripheral blood stem cell transplantation. Blood 104, 1881–1887 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Suhr, O. B. et al. Do troponin and B-natriuretic peptide detect cardiomyopathy in transthyretin amyloidosis? J. Intern. Med. 263, 294–301 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Robin M. T. Cooke for editorial advice and writing assistance, which was indirectly funded by a 1-year contract with the Fondazione Maugeri, a not-for-profit organization providing evidence-based medical services within the framework of the Italian National Health Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Rapezzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapezzi, C., Quarta, C., Riva, L. et al. Transthyretin-related amyloidoses and the heart: a clinical overview. Nat Rev Cardiol 7, 398–408 (2010). https://doi.org/10.1038/nrcardio.2010.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.67

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing