Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiorenal syndrome—current understanding and future perspectives

Key Points

  • Interactions between the heart and kidney form the basis of cardiorenal syndrome, which is a heterogeneous and complex clinical entity associated with substantial morbidity and mortality

  • Precise clinical characterization and classification of cardiorenal syndrome has not yet been performed

  • The factors that mediate connections between the heart and the kidney and their complex interactions must be clarified in vitro and in experimental models before clinical applications are sought

  • Iron metabolism and erythrocyte turnover are likely to be central to the pathophysiology of cardiorenal syndrome

Abstract

Combined cardiac and renal dysfunction has gained considerable attention. Hypotheses about its pathogenesis have been formulated, albeit based on a relatively small body of experimental studies, and a clinical classification system has been proposed. Cardiorenal syndrome, as presently defined, comprises a heterogeneous group of acute and chronic clinical conditions, in which the failure of one organ (heart or kidney) initiates or aggravates failure of the other. This conceptual framework, however, has two major drawbacks: the first is that, despite worldwide interest, universally accepted definitions of cardiorenal syndrome are lacking and characterization of heart and kidney failure is not uniform. This lack of consistency hampers experimental studies on mechanisms of the disease. The second is that, although progress has been made in developing hypotheses for the pathogenesis of cardiorenal syndrome, these initiatives are at an impasse. No hierarchy has been identified in the myriad of haemodynamic and non-haemodynamic factors mediating cardiorenal syndrome. This Review discusses current understanding of cardiorenal syndrome and provides a roadmap for further studies in this field. Ultimately, discussion of the definition and characterization issues and of the lack of organization among pathogenetic factors is hoped to contribute to further advancement of this complex field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution in the understanding of a clinical condition.
Figure 2: IL-6 is one of the many factors implicated in cardiorenal interactions.
Figure 3: Proposed 'roadmap' for future studies of cardiorenal syndrome.

Similar content being viewed by others

References

  1. Bongartz, L. G., Cramer, M. J., Doevendans, P. A., Joles, J. A. & Braam, B. The severe cardiorenal syndrome: 'Guyton revisited'. Eur. Heart J. 26, 11–17 (2005).

    PubMed  Google Scholar 

  2. El Nahas, M. Cardio-Kidney-Damage: a unifying concept. Kidney Int. 78, 14–18 (2010).

    PubMed  Google Scholar 

  3. Ronco, C., Haapio, M., House, A. A., Anavekar, N. & Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 52, 1527–1539 (2008).

    Google Scholar 

  4. Damman, K. et al. Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. J. Card. Fail. 13, 599–608 (2007).

    PubMed  Google Scholar 

  5. Earle, D. P. Jr, Farber, S. J., Alexander, J. D. & Eichna, L. W. Effect of treatment on renal functions and electrolyte excretion in congestive heart failure. J. Clin. Invest. 28, 778 (1949).

    Google Scholar 

  6. Futcher, P. H. & Schroeder, H. A. Studies on congestive heart failure. II. Impaired renal excretion of sodium chloride. Am. J. Med. Sci. 204, 52 (1942).

    CAS  Google Scholar 

  7. Seymour, W. B., Pritchard, W. H., Longley, L. P. & Hayman, J. M. Cardiac output, blood and interstitial fluid volumes, total circulating serum protein, and kidney function during cardiac failure and after improvement. J. Clin. Invest. 21, 229–240 (1942).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Winton, F. R. The influence of venous pressure on the isolated mammalian kidney. J. Physiol. 72, 49–61 (1931).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Guyton, A. C. The surprising kidney-fluid mechanism for pressure control—its infinite gain! Hypertension 16, 725–730 (1990).

    CAS  PubMed  Google Scholar 

  10. Schwarz, U. et al. Morphology of coronary atherosclerotic lesions in patients with end-stage renal failure. Nephrol. Dial. Transplant. 15, 218–223 (2000).

    CAS  PubMed  Google Scholar 

  11. Tornig, J. et al. Hypertrophy of intramyocardial arteriolar smooth muscle cells in experimental renal failure. J. Am. Soc. Nephrol. 10, 77–83 (1999).

    CAS  PubMed  Google Scholar 

  12. Schwarz, U., Amann, K. & Ritz, E. Why are coronary plaques more malignant in the uraemic patient? Nephrol. Dial. Transplant. 14, 224–225 (1999).

    CAS  PubMed  Google Scholar 

  13. Amann, K., Breitbach, M., Ritz, E. & Mall, G. Myocyte/capillary mismatch in the heart of uremic patients. J. Am. Soc. Nephrol. 9, 1018–1022 (1998).

    CAS  PubMed  Google Scholar 

  14. Bongartz, L. G. et al. Transient nitric oxide reduction induces permanent cardiac systolic dysfunction and worsens kidney damage in rats with chronic kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R815–R823 (2010).

    CAS  PubMed  Google Scholar 

  15. Scadding, J. G. Diagnosis: the clinician and the computer. Lancet 2, 877–882 (1967).

    CAS  PubMed  Google Scholar 

  16. Bock, J. S. & Gottlieb, S. S. Cardiorenal syndrome: new perspectives. Circulation 121, 2592–2600 (2010).

    PubMed  Google Scholar 

  17. Bongartz, L. G. et al. Target organ crosstalk in the cardiorenal syndrome: animal models. Am. J. Physiol. Renal Physiol. 303, F1253–F1263 (2012).

    CAS  PubMed  Google Scholar 

  18. Wright, H. J. & MacAdam, D. B. Clinical thinking and practice: diagnosis and decision in patient care (Churchill Livingstone, 1979).

    Google Scholar 

  19. Damman, K. et al. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J. Am. Coll. Cardiol. 53, 582–588 (2009).

    PubMed  Google Scholar 

  20. Mullens, W. et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 53, 589–596 (2009).

    PubMed  PubMed Central  Google Scholar 

  21. Uthoff, H. et al. Central venous pressure and impaired renal function in patients with acute heart failure. Eur. J. Heart Fail. 13, 432–439 (2011).

    PubMed  Google Scholar 

  22. Hatamizadeh, P. et al. Cardiorenal syndrome: pathophysiology and potential targets for clinical management. Nat. Rev. Nephrol. 9, 99–111 (2013).

    CAS  PubMed  Google Scholar 

  23. Testani, J. M., Kimmel, S. E., Dries, D. L. & Coca, S. G. Prognostic importance of early worsening renal function after initiation of angiotensin-converting enzyme inhibitor therapy in patients with cardiac dysfunction. Circ. Heart Fail. 4, 685–691 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bellomo, R. et al. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) group. Crit. Care 8, R204–R212 (2004).

    PubMed  PubMed Central  Google Scholar 

  25. Ronco, C. et al. Improving outcomes from acute kidney injury (AKI): report on an initiative. Int. J. Artif. Organs 30, 373–376 (2007).

    CAS  PubMed  Google Scholar 

  26. McCullough P. A. et al. Prevention of cardio-renal syndromes: workgroup statements from the 7th ADQI consensus conference. Nephrol. Dial. Transplant. 25, 1777–1784 (2010).

    PubMed  Google Scholar 

  27. Bagshaw, S. M. et al. Epidemiology of cardio-renal syndromes: workgroup statements from the 7th ADQI consensus conference. Nephrol. Dial. Transplant. 25, 1406–1416 (2010).

    PubMed  Google Scholar 

  28. Gottschalk, C. W. & Mylle, M. Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Am. J. Physiol. 185, 430–439 (1956).

    CAS  PubMed  Google Scholar 

  29. Deen, W. M., Robertson, C. R. & Brenner, B. M. A model of glomerular ultrafiltration in the rat. Am. J. Physiol. 223, 1178–1183 (1972).

    CAS  PubMed  Google Scholar 

  30. Cannon, P. J. The kidney in heart failure. N. Engl. J. Med. 296, 26–32 (1977).

    CAS  PubMed  Google Scholar 

  31. Stanton, R. C. & Brenner, B. M. Role of the kidney in congestive heart failure. Acta Med. Scand. Suppl. 707, 21–25 (1986).

    CAS  PubMed  Google Scholar 

  32. Ito, S. Cardiorenal syndrome: an evolutionary point of view. Hypertension 60, 589–595 (2012).

    CAS  PubMed  Google Scholar 

  33. Silverberg, D. S. et al. The use of subcutaneous erythropoietin and intravenous iron for the treatment of the anemia of severe, resistant congestive heart failure improves cardiac and renal function and functional cardiac class, and markedly reduces hospitalizations. J. Am. Coll. Cardiol. 35, 1737–1744 (2000).

    CAS  PubMed  Google Scholar 

  34. Cogan, M. G. Angiotensin II: a powerful controller of sodium transport in the early proximal tubule. Hypertension 15, 451–458 (1990).

    CAS  PubMed  Google Scholar 

  35. Braam, B., Cupples, W. A., Joles, J. A. & Gaillard, C. Systemic arterial and venous determinants of renal hemodynamics in congestive heart failure. Heart Fail. Rev. 17, 161–175 (2012).

    PubMed  Google Scholar 

  36. Kirchheim, H., Ehmke, H. & Persson, P. Sympathetic modulation of renal hemodynamics, renin release and sodium excretion. Klin. Wochenschr. 67, 858–864 (1989).

    CAS  PubMed  Google Scholar 

  37. Kishimoto, T., Maekawa, M., Abe, Y. & Yamamoto, K. Intrarenal distribution of blood flow and renin release during renal venous pressure elevation. Kidney Int. 4, 259–266 (1973).

    CAS  PubMed  Google Scholar 

  38. Kopp, U. C., Olson, L. A. & DiBona, G. F. Renorenal reflex responses to mechano- and chemoreceptor stimulation in the dog and rat. Am. J. Physiol. 246, F67–F77 (1984).

    CAS  Google Scholar 

  39. Skott, O. & Briggs, J. P. Direct demonstration of macula densa-mediated renin secretion. Science 237, 1618–1620 (1987).

    CAS  PubMed  Google Scholar 

  40. Tornig, J. et al. Arteriolar wall thickening, capillary rarefaction and interstitial fibrosis in the heart of rats with renal failure: the effects of ramipril, nifedipine and moxonidine. J. Am. Soc. Nephrol. 7, 667–675 (1996).

    CAS  PubMed  Google Scholar 

  41. Crawford, D. C., Chobanian, A. V. & Brecher, P. Angiotensin II induces fibronectin expression associated with cardiac fibrosis in the rat. Circ. Res. 74, 727–739 (1994).

    CAS  PubMed  Google Scholar 

  42. Groeschel, M. & Braam, B. Connecting chronic and recurrent stress to vascular dysfunction: no relaxed role for the renin-angiotensin system. Am. J. Physiol. Renal Physiol. 300, F1–F10 (2011).

    CAS  PubMed  Google Scholar 

  43. Ligtenberg, G. et al. Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N. Engl. J. Med. 340, 1321–1328 (1999).

    CAS  PubMed  Google Scholar 

  44. Chen, H. H., Redfield, M. M., Nordstrom, L. J., Cataliotti, A. & Burnett, J. C. Jr. Angiotensin II AT1 receptor antagonism prevents detrimental renal actions of acute diuretic therapy in human heart failure. Am. J. Physiol. Renal Physiol. 284, F1115–F1119 (2003).

    CAS  PubMed  Google Scholar 

  45. Schlaich, M. P. et al. Sympathetic activation in chronic renal failure. J. Am. Soc. Nephrol. 20, 933–939 (2009).

    PubMed  Google Scholar 

  46. Joles, J. A. & Koomans, H. A. Causes and consequences of increased sympathetic activity in renal disease. Hypertension 43, 699–706 (2004).

    CAS  PubMed  Google Scholar 

  47. Koomans, H. A., Blankestijn, P. J. & Joles, J. A. Sympathetic hyperactivity in chronic renal failure: a wake-up call. J. Am. Soc. Nephrol. 15, 524–537 (2004).

    PubMed  Google Scholar 

  48. U.S. National Library of Medicine. ClinicalTrials.gov [online], (2013).

  49. Modlinger, P. S., Wilcox, C. S. & Aslam, S. Nitric oxide, oxidative stress, and progression of chronic renal failure. Semin. Nephrol. 24, 354–365 (2004).

    CAS  PubMed  Google Scholar 

  50. Braam, B. Renal endothelial and macula densa NOS: integrated response to changes in extracellular fluid volume. Am. J. Physiol. 276, R1551–R1561 (1999).

    CAS  PubMed  Google Scholar 

  51. Turkstra, E., Braam, B. & Koomans, H. A. Nitric oxide release as an essential mitigating step in tubuloglomerular feedback: observations during intrarenal nitric oxide clamp. J. Am. Soc. Nephrol. 9, 1596–1603 (1998).

    CAS  PubMed  Google Scholar 

  52. Turkstra, E., Braam, B. & Koomans, H. A. Impaired renal blood flow autoregulation in two-kidney, one-clip hypertensive rats is caused by enhanced activity of nitric oxide. J. Am. Soc. Nephrol. 11, 847–855 (2000).

    CAS  PubMed  Google Scholar 

  53. Welch, W. J., Mendonca, M., Aslam, S. & Wilcox, C. S. Roles of oxidative stress and AT1 receptors in renal hemodynamics and oxygenation in the postclipped 2K, 1C kidney. Hypertension 41, 692–696 (2003).

    CAS  PubMed  Google Scholar 

  54. Wilcox, C. S. Redox regulation of the afferent arteriole and tubuloglomerular feedback. Acta Physiol. Scand. 179, 217–223 (2003).

    CAS  PubMed  Google Scholar 

  55. Rosenbaugh, E. G., Savalia, K. K., Manickam, D. S. & Zimmerman, M. C. Antioxidant-based therapies for angiotensin II-associated cardiovascular diseases. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R917–R928 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmidt, R. J. & Baylis, C. Total nitric oxide production is low in patients with chronic renal disease. Kidney Int. 58, 1261–1266 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sharma, R. & Davidoff, M. N. Oxidative stress and endothelial dysfunction in heart failure. Congest. Heart Fail. 8, 165–172 (2002).

    CAS  PubMed  Google Scholar 

  58. Bongartz, L. G. et al. Subtotal nephrectomy plus coronary ligation leads to more pronounced damage in both organs than either nephrectomy or coronary ligation. Am. J. Physiol. Heart Circ. Physiol. 302, H845–H854 (2012).

    CAS  PubMed  Google Scholar 

  59. Bongartz, L. G. et al. The nitric oxide donor molsidomine rescues cardiac function in rats with chronic kidney disease and cardiac dysfunction. Am. J. Physiol. Heart Circ. Physiol. 299, H2037–H2045 (2010).

    CAS  PubMed  Google Scholar 

  60. Ramos, L. F. et al. Effects of combination tocopherols and alpha lipoic acid therapy on oxidative stress and inflammatory biomarkers in chronic kidney disease. J. Ren. Nutr. 21, 211–218 (2011).

    CAS  PubMed  Google Scholar 

  61. Chae, C. U., Albert, C. M., Moorthy, M. V., Lee, I. M. & Buring, J. E. Vitamin E supplementation and the risk of heart failure in women. Circ. Heart Fail. 5, 176–182 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Robinson, I., de Serna, D. G., Gutierrez, A. & Schade, D. S. Vitamin E in humans: an explanation of clinical trial failure. Endocr. Pract. 12, 576–582 (2006).

    PubMed  Google Scholar 

  63. Jun, M. et al. Antioxidants for chronic kidney disease. Cochrane Database of Systematic Reviews, Issue 10, Art. No.:CD008176. http://dx.doi.org/10.1002/14651858.CD008176.pub2.

  64. Boengler, K., Hilfiker-Kleiner, D., Drexler, H., Heusch, G. & Schulz, R. The myocardial JAK/STAT pathway: from protection to failure. Pharmacol. Ther. 120, 172–185 (2008).

    CAS  PubMed  Google Scholar 

  65. Kisseleva, T., Bhattacharya, S., Braunstein, J. & Schindler, C. W. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285, 1–24 (2002).

    CAS  PubMed  Google Scholar 

  66. Murray, P. J. The JAK-STAT signaling pathway: input and output integration. J. Immunol. 178, 2623–2629 (2007).

    CAS  PubMed  Google Scholar 

  67. Heinrich, P. C. et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bluyssen, H. A. et al. IFN gamma-dependent SOCS3 expression inhibits IL-6-induced STAT3 phosphorylation and differentially affects IL-6 mediated transcriptional responses in endothelial cells. Am. J. Physiol. Cell. Physiol. 299, C354–C362 (2010).

    CAS  PubMed  Google Scholar 

  69. Wegrzyn, J. et al. Function of mitochondrial Stat3 in cellular respiration. Science 323, 793–797 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Krebs, D. L. & Hilton, D. J. SOCS proteins: negative regulators of cytokine signaling. Stem Cells 19, 378–387 (2001).

    CAS  PubMed  Google Scholar 

  71. Alexander, W. S. et al. Suppressors of cytokine signaling (SOCS): negative regulators of signal transduction. J. Leukoc. Biol. 66, 588–592 (1999).

    CAS  PubMed  Google Scholar 

  72. Starr, R. & Hilton, D. J. Negative regulation of the JAK/STAT pathway. Bioessays 21, 47–52 (1999).

    CAS  PubMed  Google Scholar 

  73. Chen, W., Daines, M. O. & Khurana Hershey, G. K. Turning off signal transducer and activator of transcription (STAT): the negative regulation of STAT signaling. J. Allergy Clin. Immunol. 114, 476–489 (2004).

    CAS  PubMed  Google Scholar 

  74. Croker, B. A. et al. SOCS3 negatively regulates IL-6 signaling in vivo. Nat. Immunol. 4, 540–545 (2003).

    CAS  PubMed  Google Scholar 

  75. Gelinas, L., Falkenham, A., Oxner, A., Sopel, M. & Legare, J. F. Highly purified human peripheral blood monocytes produce IL-6 but not TNFα in response to angiotensin II. J. Renin Angiotensin Aldosterone Syst. 12, 295–303 (2011).

    CAS  PubMed  Google Scholar 

  76. Sanceau, J., Wijdenes, J., Revel, M. & Wietzerbin, J. IL-6 and IL-6 receptor modulation by IFN-gamma and tumor necrosis factor-alpha in human monocytic cell line (THP-1). Priming effect of IFN-gamma. J. Immunol. 147, 2630–2637 (1991).

    CAS  PubMed  Google Scholar 

  77. Negoro, S. et al. Activation of JAK/STAT pathway transduces cytoprotective signal in rat acute myocardial infarction. Cardiovasc. Res. 47, 797–805 (2000).

    CAS  PubMed  Google Scholar 

  78. Hirota, H. et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97, 189–198 (1999).

    CAS  PubMed  Google Scholar 

  79. Hattori, R. et al. Role of STAT3 in ischemic preconditioning. J. Mol. Cell. Cardiol. 33, 1929–1936 (2001).

    CAS  PubMed  Google Scholar 

  80. Stephanou, A. et al. Ischemia-induced STAT-1 expression and activation play a critical role in cardiomyocyte apoptosis. J. Biol. Chem. 275, 10002–10008 (2000).

    CAS  PubMed  Google Scholar 

  81. Go, A. S. et al. Hemoglobin level, chronic kidney disease, and the risks of death and hospitalization in adults with chronic heart failure: the anemia in chronic heart failure: outcomes and resource utilization (ANCHOR) study. Circulation 113, 2713–2723 (2006).

    CAS  PubMed  Google Scholar 

  82. Silverberg, D., Wexler, D., Blum, M., Wollman, Y. & Iaina, A. The cardio-renal anaemia syndrome: does it exist? Nephrol. Dial. Transplant. 18 (Suppl. 8), viii7–viii12 (2003).

    PubMed  Google Scholar 

  83. Silverberg, D. S., Wexler, D., Iaina, A. & Schwartz, D. The interaction between heart failure and other heart diseases, renal failure, and anemia. Semin. Nephrol. 26, 296–306 (2006).

    PubMed  Google Scholar 

  84. Jie, K. E. et al. Erythropoietin and the cardiorenal syndrome: cellular mechanisms on the cardiorenal connectors. Am. J. Physiol. Renal Physiol. 291, F932–F944 (2006).

    CAS  PubMed  Google Scholar 

  85. van der Putten, K., Braam, B., Jie, K. E. & Gaillard, C. A. Mechanisms of disease: erythropoietin resistance in patients with both heart and kidney failure. Nat. Clin. Pract. Nephrol. 4, 47–57 (2008).

    CAS  PubMed  Google Scholar 

  86. Drueke, T. B. et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 355, 2071–2084 (2006).

    CAS  PubMed  Google Scholar 

  87. Singh, A. K. et al. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 355, 2085–2098 (2006).

    CAS  PubMed  Google Scholar 

  88. Pfeffer, M. A. et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 361, 2019–2032 (2009).

    PubMed  Google Scholar 

  89. Swedberg, K. et al. Treatment of anemia with darbepoetin alfa in systolic heart failure. N. Engl. J. Med. 368, 1210–1219 (2013).

    CAS  PubMed  Google Scholar 

  90. Kobori, H. et al. Young scholars award lecture: intratubular angiotensinogen in hypertension and kidney diseases. Am. J. Hypertens. 19, 541–550 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kainer, R. A functional model of the rat kidney. J. Math. Biol. 7, 57–94 (1979).

    CAS  PubMed  Google Scholar 

  92. Jensen, P. K., Christensen, O. & Steven, K. A mathematical model of fluid transport in the kidney. Acta Physiol. Scand. 112, 373–385 (1981).

    CAS  PubMed  Google Scholar 

  93. van der Lubbe, N. et al. Angiotensin II induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter independent of aldosterone. Kidney Int. 79, 66–76 (2011).

    CAS  PubMed  Google Scholar 

  94. Gaillard, C. A. & Schiffelers, R. M. Red blood cell: barometer of cardiovascular health? Cardiovasc. Res. 98, 3–4 (2013).

    CAS  PubMed  Google Scholar 

  95. van der Putten, K. et al. Erythropoietin treatment in patients with combined heart and renal failure: objectives and design of the EPOCARES study. J. Nephrol. 23, 363–368 (2010).

    PubMed  Google Scholar 

  96. van der Putten, K. et al. Hepcidin-25 is a marker of the response rather than resistance to exogenous erythropoietin in chronic kidney disease/chronic heart failure patients. Eur. J. Heart Fail. 12, 943–950 (2010).

    CAS  PubMed  Google Scholar 

  97. Emans, M. E. et al. Determinants of red cell distribution width (RDW) in cardiorenal patients: RDW is not related to erythropoietin resistance. J. Card. Fail. 17, 626–633 (2011).

    PubMed  Google Scholar 

  98. Emans, M. E. et al. Red cell distribution width is associated with physical inactivity and heart failure, independent of established risk factors, inflammation or iron metabolism; the EPIC-Norfolk study. Int. J. Cardiol. 168, 3550–3555 (2013).

    PubMed  Google Scholar 

  99. Klip, I. T. et al. Iron deficiency in chronic heart failure: an international pooled analysis. Am. Heart J. 165, 575–582 (2013).

    CAS  PubMed  Google Scholar 

  100. Anker, S. D. et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 361, 2436–2448 (2009).

    CAS  PubMed  Google Scholar 

  101. Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work Group. KDIGO clinical practice guideline for anemia in chronic kidney disease. Kidney Int. Suppl. 2, 279–335 (2012).

  102. Gut, N. et al. Erythropoietin combined with ACE inhibitor prevents heart remodeling in 5/6 nephrectomized rats independently of blood pressure and kidney function. Am. J. Nephrol. 38, 124–135 (2013).

    CAS  PubMed  Google Scholar 

  103. Massie, B. M. et al. Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N. Engl. J. Med. 363, 1419–1428 (2010).

    PubMed  Google Scholar 

  104. Shlipak, M. G. & Massie, B. M. The clinical challenge of cardiorenal syndrome. Circulation 110, 1514–1517 (2004).

    PubMed  Google Scholar 

  105. Heywood, J. T. The cardiorenal syndrome: lessons from the ADHERE database and treatment options. Heart Fail. Rev. 9, 195–201 (2004).

    PubMed  Google Scholar 

Download references

Acknowledgements

B. Braam is a Heart and Stroke Foundation of Canada New Investigator and a Mazankowski Alberta Heart Institute member.

Author information

Authors and Affiliations

Authors

Contributions

B. Braam and A. H. Danishwar researched the data for the article and wrote the manuscript. B. Braam, J. A. Joles and C. A. Gaillard contributed substantially to discussions of the article's content. All four authors contributed to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Branko Braam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braam, B., Joles, J., Danishwar, A. et al. Cardiorenal syndrome—current understanding and future perspectives. Nat Rev Nephrol 10, 48–55 (2014). https://doi.org/10.1038/nrneph.2013.250

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing